LED glass lens /Glass lens street light/Floodlight
LED Modle Roadway LED Lighting for Smarter, Safer Streets

The GT lighting® GLM01 Series Cobra Head is optimized for customers seeking a lighting solution for large areas, major roadways, freeways and expressways.

Features & Benefits

  • Glass lens with high light transmittance and high light efficiency
  • Glass lens has high hardness and can dissipate heat
  • Offerings to 9,250 Lumens
  • Up to 195 LPW’s
  • Excellent light control which aims light directly on primary target, optimizing watts
  • Designed and assembled in the World

Specifications

Specifications300*76*44Wattage Range25 – 70 W
Voltage OfferingDC54V, 20-277 V, 347-480 V, 277-480 V, 208 V, 240 VEfficacy Range160 – 210 LPW
Lumen Range8,000 – 13,000lmColor OfferingGray, Black, Dark Bronze, RAL and custom colors available
CCT Offering2700 K, 3000 K, 4000 KOptics & DistributionsType II Narrow, Type II/III, Type III, Type IV, Type II Enhanced Back Light
CRI Offering70Controls & Sensors0-10V Dimming, 7 pin PE receptacle, LightGrid+ compatible
Mounting OptionsAdjustable for 1.25 to 2.0 in. nominal mounting pipe, 4 Bolt Slipfitter (option)Lumen Maintenance RatingL91 @ 60,000 hours
技术新引擎,“7070+连板玻璃透镜”助力LED道路照明新未来

Custom Engineered Reflective Optic and Flat Glass Technology

Reflective optics and Flat Glass technology optimize application efficiency and minimize dirt depreciation, lighting only what you need for a long time.

Designed and Assembled in The world

The entire Glass lens Roadway street light portfolio is designed and assembled by our industry leading team in our state of the art manufacturing center in Hendersonville, NC.

glass lens
LightGrid+™ Compatible

Current's Cobra Head portfolio is compatible with LightGrid+™. LightGrid+™ allows municipalities and transportation departments the ability to remotely monitor energy consumption, detect failures, dim fixtures remotely and achieve real time energy metering.

LightGrid+™ Compatible

Current’s Cobra Head portfolio is compatible with LightGrid+™. LightGrid+™ allows municipalities and transportation departments the ability to remotely monitor energy consumption, detect failures, dim fixtures remotely and achieve real time energy metering.

浮法玻璃PPG工艺生产6步骤

你有没有想过如何制作玻璃?我们所知道的浮法玻璃是由PPG工艺生产的,这个过程是目前市场上受欢迎并且被广泛使用的过程。它包括以下步骤:
  
  第1阶段 – 熔炼和精炼:将质量密切控制的细粒成分混合制成批料,其流入炉中,加热至1500摄氏度。该温度是玻璃的熔点。
  
  第2阶段 – 浮浴:来自炉子的玻璃轻轻地流过耐火材料喷口到熔融锡的镜面状表面,从1100摄氏度开始,并将浮浴作为固体带在600摄氏度下离开。
  
  第3阶段 – 涂层(用于制作反光玻璃):通过先进的高温技术可以将光学性能发生深刻变化的涂层应用于玻璃冷却带。在线化学气相沉积(CVD)是浮法工艺发明以来重要的进步。
  
  第4阶段 – 退火:尽管玻璃形成的安静,但是当玻璃冷却时,在带中产生相当大的应力。
  
  第五阶段 – 检查:为了确保高质量,玻璃制造商在每个阶段都进行检查。有时在精炼过程中没有去除的气泡,拒绝熔化的沙粒或锡中的震颤会在玻璃带中产生涟漪。
  
  第6阶段 – 按订单生产:当金刚石钢修剪边缘时,玻璃制造的整个过程终于完成 – 应力边缘 – 并切割出由计算机决定的尺寸。玻璃仅以平方米的价格出售。

技术新引擎,“7070+连板玻璃透镜”助力LED道路照明新未来

嘉腾LED玻璃透镜模组优势
1.散热快,产品更耐用
2.配光优,照明效果更佳
3.光衰少,延长使用寿命
4.外观美,产品设计独特
5.组件好,品质更优
6.品质更优,寿命10年以上
玻璃透镜优势
玻璃透镜连板设计,突破了传统的模组采用的PC连板透镜,带来一种全新的体验,有效地克服了PC透镜的不良问题:
1、抗腐蚀能力:高硼硅3.4玻璃属于硼硅酸盐玻璃中的硼硅玻璃,耐酸耐碱,抗腐蚀性能优越。
2、耐温性强:相比PC透镜,其热膨胀系数较低,拥有良好的热稳定性,光学表面温度的变化小,保留原有的光学照明效果。
3、透光率高:常规PC透镜透光率在85%左右,造成光照的浪费,玻璃透镜透光率为90-93%,镀加增透膜后可高达97%。
4、相比于PC透镜,玻璃透镜不会产生老化/黄化现象,从而影响透镜透光率。
5、相比于PC透镜,玻璃透镜不会吸附灰尘,并且方便清洗。
隧道照明配光
发光角度120°×80°、150°×80°(对称)等多种配光角度,合理的照度均匀度和防眩光等级等
设计有效的改善隧道内路面的墙壁照明状况,改善隧道内视觉享受,减轻驾驶员驾驶疲劳。

道路配光
有TYPE2-M、TYPE3-M等多种配光角度,其配光在路面形成照度均匀的类矩形光斑,
可以适用于双向八车道、六车道、四车道、二车道、一车道道路情况。
高杆灯配光
应用于大型广场、主干道交叉路口、码头、车站和体育场等场所中,悬挂高度较高,照明范围比较
广泛而且均匀,能够带来较好的照明效果,满足大面积场所的照明需求。
工矿灯配光
发光角度25°/45°/60°/90°/120°,主要应用于大楼外墙、桥梁、公园、广告招牌、球场广场、
工厂车间照明。

【科普】光学玻璃技术原理及发展趋势解析

能改变光的传播方向,并能改变紫外、可见或红外光的相对光谱分布的玻璃。狭义的光学玻璃是指无色光学玻璃;广义的光学玻璃还包括有色光学玻璃、激光玻璃、石英光学玻璃、抗辐射玻璃、紫外红外光学玻璃、纤维光学玻璃、声光玻璃、磁光玻璃和光变色玻璃。光学玻璃可用于制造光学仪器中的透镜、棱镜、反射镜及窗口等。由光学玻璃构成的部件是光学仪器中的关键性元件。

1、前景

光学玻璃是光电技术产业的基础和重要组成部分。特别是在20世纪90年代以后,随着光学与电子信息科学、新材料科学的不断融合,作为光电子基础材料的光学玻璃在光传输、光储存和光电显示三大领域的应用更是突飞猛进,成为社会信息化尤其是光电信息技术发展的基础条件之一。

随着国内经济持续、稳定发展,中国光学玻璃制造行业发展迅猛。根据国家统计局数据显示,2010年,光学玻璃制造行业规模以上企业数量达246家,行业全年实现销售收入为234.05亿元,同比增长53.70%;实现利润15.37亿元,同比增长87.10%;资产规模达到264.50亿元,同比增长77.49%。由于光学玻璃制造行业以国内销售为主,金融危机对其影响相对较小,行业依然表现出较好的增长势头。

2、简介

用于制造光学仪器或机械系统的透镜、棱镜、反射镜、窗口等的玻璃材料。包括无色光学玻璃(通常简称光学玻璃)、有色光学玻璃、耐辐射光学玻璃、防辐射玻璃和光学石英玻璃等。光学玻璃具有高度的透明性、化学及物理学(结构和性能)上的高度均匀性,具有特定和精确的光学常数。它可分为硅酸盐、硼酸盐、磷酸盐、氟化物和硫系化合物系列。品种繁多,主要按他们在折射率(nD)-阿贝值(VD)图中的位置来分类。传统上nD>1.60,VD>50和nD<1.60,VD>55的各类玻璃定为冕(K)玻璃,其余各类玻璃定为火石(F)玻璃。冕玻璃一般作凸透镜,火石玻璃作凹透镜。通常冕玻璃属于含碱硼硅酸盐体系,轻冕玻璃属于铝硅酸盐体系,重冕玻璃及钡火石玻璃属于无碱硼硅酸盐体系,绝大部分的火石玻璃属于铅钾硅酸盐体系。随着光学玻璃的应用领域不断拓宽,其品种在不断扩大,其组成中几乎包括周期表中的所有元素。

通过折射、反射、透过方式传递光线或通过吸收改变光的强度或光谱分布的一种无机玻璃态材料。具有稳定的光学性质和高度光学均匀性。

3、光学玻璃分类

无色光学玻璃

对光学常数有特定要求,具有可见区高透过、无选择吸收着色等特点。按阿贝数大小分为冕类和火石类玻璃,各类又按折射率高低分为若干种,并按折射率大小依次排列。多用作望远镜、显微镜、照相机等的透镜、棱镜、反射镜等。

防辐照光学玻璃

对高能辐照有较大的吸收能力,有高铅玻璃和CaO-B2O2系统玻璃,前者可防止γ射线和X射线辐照,后者可吸收慢中子和热中子,主要用于核工业、医学领域等作为屏蔽和窥视窗口材料。

耐辐照光学玻璃

在一定的γ射线、X射线辐照下,可见区透过率变化较少,品种和牌号与无色光学玻璃相同,用于制造高能辐照下的光学仪器和窥视窗口。

有色光学玻璃

又称滤光玻璃。对紫外、可见、红外区特定波长有选择吸收和透过性能,按光谱特性分为选择性吸收型、截止型和中性灰3类;按着色机理分为离子着色、金属胶体着色和硫硒化物着色3类,主要用于制造滤光器。

紫外和红外光学玻璃

在紫外或红外波段具有特定的光学常数和高透过率,用作紫外、红外光学仪器或用作窗口材料。

光学石英玻璃

以二氧化硅为主要成分,具有耐高温、膨胀系数低、机械强度高、化学性能好等特点,用于制造对各种波段透过有特殊要求的棱镜、透镜、窗口和反射镜等。此外,还有用于大规模集成电路制造的光掩膜板、液晶显示器面板、影像光盘盘基薄板玻璃;光沿着磁力线方向通过玻璃时偏振面发生旋转的磁光玻璃;光按一定方向通过传输超声波的玻璃时,发生光的衍射、反射、汇聚或光频移的声光玻璃等。

4、色散分类

按色散又分为两类:色散较小的为冕类(K),色散较大的为火石类(F)。

①冕类光学玻璃分为氟冕(FK)、轻冕(QK)、磷冕(PK)、重磷冕(ZPK)、冕(K)、重冕(ZK)、钡冕(BaK)、镧冕(LaK)、钛冕(TiK)和特冕(TK)等。

②火石类光学玻璃分为轻火石(QF)、火石(F)、重火石(ZF)、钡火石(BaF)、重钡火石(ZBaF)、镧火石(LaF)、重镧火石(ZLaF)、钛火石(TiF)、冕火石(KF)和特种火石(TF)等。它们在折射率nd与色散系数v的关系图像(见图)中分布在不同的领域。

5、抗辐射

抗辐射玻璃是广义光学玻璃的一种。包括防辐射玻璃和耐辐射玻璃。

①防辐射玻璃主要是对γ射线和X射线有较大吸收能力的玻璃。当γ射线或X射线进入防护玻璃时,由于玻璃内部产生光电效应、生成正负电子对,同时产生激发态和自由态电子,使射入的γ射线或X射线能量减小,穿透力下降,起到了防护作用。当防辐射玻璃的密度增加时,屏蔽能力也相应增加。防γ射线的玻璃的密度通常不小于4.5g/cm。近年来,已开始用密度为6.2~6.5g/cm的玻璃,常用的有ZF系列。

②耐辐射光学玻璃主要指在γ射线作用下不易着色的光学玻璃。耐辐射光学玻璃牌号的命名,仍根据光学玻璃牌号,注明能耐辐射的伦琴数,例如,K509耐辐射光学玻璃的光学常数同K9,且能耐10伦琴剂量的γ射线。普通玻璃受高能射线辐射后产生自由电子,它与玻璃内部的缺位结合,形成色心。同时也可使原子核移位,破坏了正常的结构,也产生色心,使玻璃着色。

耐辐射光学玻璃中引入了CeO2,在高能γ射线辐照后,由于式①,能俘获电子,不使玻璃内部产生色心,且因Ce和Ce的吸收带在紫外区。当CeO2含量过高时,在紫外、红外的吸收带延伸到可见光区,使可见光的蓝色区域吸收增加,导致玻璃呈黄色。同时,也会因玻璃中其他成分的影响而加深颜色,所以CeO2的含量不能太高,在K509中CeO2的含量约为0.4%~0.5%,在K709中CeO2约为1%。

6、制作原料

以优质石英砂为主料。适当加入辅料。由于稀土具有高的折射率,低的色散和良好的化学稳定性,可生产光学玻璃,用于制造高级照相机、摄像机、望远镜等高级光学仪器的镜头。例如一种含氧化镧lao360%,氧化硼b2o340%的具有优良光学性质的镧玻璃,是制造高级照相机的镜头和潜望镜的镜头的不可缺少的光学材料。另外,利用一些稀土元素的防辐射特性,可生产防辐射玻璃。

7、冷加工

一种利用化学气相热处理手段以及单片钠钙硅玻璃来改变其原来分子结构而不影响玻璃原有颜色及透光率,使其达到超硬度标准,在高温火焰冲击下以满足防火要求的超硬度防火玻璃及其制造方法、专用设备。它是由下述重量配比的组份制成:钾盐蒸气(72%~83%)、氩气(7%~10%)、气态氯化铜(8%~12%)、氮气(2%~6%)。它包含以下工艺流程:以钠钙硅玻璃为基片进行切割,精磨边的冷加工→对冷加工后的钠钙硅玻璃进行化学气相热处理→将钠钙硅玻璃表面进行镀防火保护膜的处理→将钠钙硅玻璃表面进行特种物理钢化处理。由缸体及其与之相套合的缸盖、与缸盖一体连接的反应釜构成专用热分解气化设备。

8、发展

光学玻璃的发展和光学仪器的发展是密不可分的。光学系统新的改革往往向光学玻璃提出新的要求,因而推动了光学玻璃的发展,同样,新品种玻璃的试制成功也也往往反过来促进了光学仪器的发展。

最早被人们用来制作光学零件的光学材料是天然晶体,据称古代亚西利亚用水晶作透镜,而在古代中国则应用天然电气石(茶镜)和黄水晶。考古家证明公元三千年前在埃及和我们(战国时代)人们已能制造玻璃。但是玻璃作为眼镜和镜子还是十三世纪在威尼斯开始的。恩格斯在“自然辨证法”中对此曾给予很高的评价,认为这是当时的卓越发明之一。此后由于天文学家与航海学的发展需要,伽利略、牛顿、笛卡儿等也用玻璃制造了望远镜和显微镜。从十六世纪开始玻璃已成为制造光学零件的主要材料了。

到了十七世纪,光学系统的消色差成为光学仪器的中心问题。这时由于改进了玻璃成分,在玻璃中引入了氧化铅,赫尔才于1729年获得第一对消色差透镜,从此,光学玻璃就被分为冕牌和燧石玻璃两个大类。

1768年纪南在法国首先用粘土棒搅拌的方法制得了均匀的光学玻璃,从而开始建立了独立的光学玻璃制造工业。在十九世纪中叶,几个发达的资本主义国家都先后建立了自己的光学玻璃工厂,如法国帕腊-芒图公司(1872年)、英国钱斯公司(1848)、德国萧特公司(1848)等。

十九世纪光学仪器有很大发展。第一次世界大战前夕,德国为了迅速发展军用光学仪器,要求打破光学玻璃品种贫乏的限制。这时,著名物理学家阿员参加了萧特厂的工作。他在玻璃中加入了新的氧化物如BaO,B2O3,ZnO,P2O3等,并且研究了它他对玻璃光学常数的影响。在这基础上,发展了钡冕、硼冕、锌冕等类型玻璃,同时也开始试制了特殊相对部分色散的燧石玻璃。在这时期内,光学玻璃品种有了很大的扩展,因而在光学仪器方面出现了较完整的照相机及显微镜物镜。

直至二十世纪三十年代以前,大部分工作仍在萧特厂基础上进行。到1934年获得了一系列重冤玻璃,如德国号SK-16(620/603)及SK-18(639/555)等。到此为止,可以认为是光学玻璃发展的一个阶段。

二次世界大战前后,随着各种光学仪器如航空摄影,紫外与红外光谱仪器、高级照相物镜等的发展,对光学玻璃又产生了新的需要。这时,光学玻璃也就相应地有了新的发展。1942年,美国摩莱(Morey)及以后苏联与德国的科学工作者都相继把稀士及稀散氧化物引入玻璃中,因而扩大了玻璃品种,得到了一系列高折射率低色散的光学玻璃,如德国LaK,LaF,苏联CTK及ТЬФ等品种系列。与此同时,也进行了低折射率大色散玻璃的研究并得到一系列氟钛硅酸盐系统的光学玻璃,如苏联ЛФ-9,ЛФ-12,德国F-16等品种。

由于各种新品种光学玻璃在加工或使用性能上或多或少地存在着缺陷,因此在研究扩展光学玻璃领域的同时,还针对改善各种新品种光学玻璃的物理和物理化学性质。以及生产工艺进行了许多工作。

综观以上历史发展的过程,可以预言今后光学玻璃的发展方向是:

①制得特别高折射率的玻璃;

②制得特殊相对部分色散的玻璃;

③发展红外及紫外光学玻璃;

④取代玻璃中某些不良的成分如放射性的THO2,有毒的BcO,Sb2O3等;

⑤提高玻璃的化学稳定性;

⑥提高玻璃透明度和防止玻璃辐射着色;

⑦改进工艺过程,降低新品种玻璃价格。

LED透镜是属于反射作用还是折射作用
浅析:LED透镜的光损失

LED透镜模组

  是将多个单颗透镜通过注塑完成一个整体的多头透镜,按不同需求可以设计成3合1、5合1甚至几十颗合一的透镜模组;此设计有效节省生产成本,实现产品品质的一致性,节省灯具机构空间,更容易实现“大功率”等特点。

[图1] 多种LED透镜

  光损失斟酌

  1.有泡壳、透镜的灯具其光通量实际要满足标准要求的光分布,还需考虑外壳、透镜的透过率、溢出光损失等因素。而泡灯或作普通照明用大功率需要用透镜将平行光束进行扩散处理,来满足标准的要求。为使光学效果更加合理,设计中应将灯具外罩分割成矩形小单元,这样做的目的在于打碎光波的波面,使产品产生均匀的外观效果。在每个小单元中,采用椭球面,因为该面具有水平和垂直两个方向的弧度,从而可以在两个方向上用不同的曲率半径达到不同的扩散效果。其根本目的是克服传统技术的不足,合理利用光通量,实现均匀、高效的光分布。

  实际上泡灯类的外壳就是PC料(注塑完成),球形、梨形、筒形的泡壳都是非小单元、非平面的整壳,光损失很大、光角度偏小。

  2.因为透镜的一个表面为具有水平和垂直两个方向曲率半径的曲面,所以可以使入射光在水平方向和垂直方向都得到扩散。鉴于两个方向的曲率半径相互独立,所以可以根据要求,分别调节两个曲率,使得光输出在两个方向上得到不同程度的扩散。因此,使用双向曲率曲面构成的透镜,可以根据设计要求更自由地分配光输出,更高效地利用光通量,减少不必要的浪费和眩光。此外,由于使用的是光滑过渡的曲面,灯具有均匀过渡的光分布和良好的外观。完全透明的PMMA灯饰或灯罩会在光源的中心造成眩目或刺眼的弦光,但是亮度在光源外围却迅速减少。很多社交场合与作业环境的照明必须排除这种令人不快的气氛或是尽量减少引起眼睛不适的光源。

[图2] LED可视化透镜光线

  3.每个透镜单元在本体上的投影为矩形,从而使各单元能紧密、整齐地排列。平行入射光束经过透镜单元的折射作用,在水平方向形成左右对称的均匀扩散,在垂直方向形成向下偏折的均匀扩散。通过调整一组透镜中各单元的大小和两个方向的曲率半径,调配出射光通量在不同立体角范围内的分布,达到设计要求的光分布。

  鉴于入射曲面的作用是使光线发生偏折形成扩散,产品设计中具体每组透镜的单元个数、单元大小、曲率半径等都可以结合实际情况而变化。实际情况是大功率用透镜的透镜上的内纹(为分割小单元)都由厂家做好,选用时只考虑透镜高度、角度、材质这些。

  4.我们选择将光源放于透镜焦点的内侧,光源离透镜越远,透镜收集到的光源光通量越少。因而透镜系统的效率越低,根据单凸透镜的计算公式: r=(nL-1)f。其中r—凸面曲率半径, nL—透镜材料折射率, f—透镜焦距

  在选定透镜材料的情况下,焦距越大,曲率半径越大。在同样透镜孔径Φ的条件下,曲率半径越大,透镜越薄。而透镜越厚,像差会越明显,从而影响使用效果。因此,尽可能选择焦距较大的透镜。同时,焦距的增大,光学系统尺寸的增加,因此,透镜的焦距也不可以一味追求最大。由于透镜厚度不是很大,因此没有采用菲涅耳透镜,避免增加加工的繁琐性和成本。

老化的LED路灯
LED路灯实验室及现场光衰检测方法对比

本文对LED路灯光衰的现场检测方法进行深入研究。

基于相对光衰的原理,研究得到一种符合LED路灯乃至其它LED照明灯具的现场光衰测试方法,并开发相应测试装置,解决目前实验室灯具光衰寿命检测普遍存在与实际应用环境差别大、测试时间过长、流程复杂、成本高及不易于监测光衰导致失效的时间点等难题,对于整体提升LED照明产品质量和促进LED产业健康发展具有非常重要的意义。

1实验室光衰检测方法

目前,在LED路灯的光衰寿命检测主要是在理想实验室环境中进行。

依据LB/T001—2009《整体式LED路灯的测量方法》、CJ/T420—2013《LED路灯》、GB/T24907—2010《道路照明用LED灯性能要求》、GB/T24824—2009《普通照明用LED模块测试方法》等标准,在标准规定条件下,老炼LED路灯,直到老炼时间t至少达到6000小时,至少每隔1000小时测量LED路灯的总光通量Φi,按照公式(1)计算,与初始光通量Φ0比较得到其光通维持率ΔΦ即光衰。

同时部分标准为了测试简便,推荐一种相对光通维持率(相对光衰)的测试方法,即是在规定距离的灯下点的光照度E替代光通量Φ,按照公式(2)来计算光通维持率,测试示意图如图1所示。

图1 相对光通维持率(光衰)测试示意图

公式(1)、(2)中,Φ初始和Φi分别代表老炼初始时间t初始和某时间点ti的光通量,E初始和Ei分别代表老炼初始时间t初始和某时间点ti的相对照度。

2现场光衰检测方法

本文参考实验室推荐的相对光通维持率(光衰)的简便测试方法,利用LED路灯在照射范围内某固定点的光照度与整灯光通量基本成线性变化关系的原理,研究一种LED路灯相对光衰的现场检测方法。

如图2所示,通过测试照射范围内灯杆某测试点的光照度E来代表相对光通量Φ,从而计算LED路灯的相对光衰变化趋势。

图2 LED路灯现场相对光衰测试示意图

开发符合要求的光照度测试装置是LED路灯现场相对光衰测试方法的最关键研究内容,通过充分考虑LED路灯道路照明现场应用环境的复杂性和严酷气候条件,针对性开发间隙性光照度测试装置。

如图3所示,解决了在现场自动检测某测试点照度以其来计算LED路灯的相对光衰的技术难题。

图3 间隙性光照度测试装置机械结构图

在测试前利用双向转角电机实现照度探头自动弹出,探头稳定30秒后开始测试,再过30秒完成本次照度测试并由双向转角电机收回照度探头,利用弹出和收回机制不但保护了照度探头,还有效避免照度探头长时间暴露于光照下而延长探头的寿命。

为了解决光电探头较长时间使用过程中存在漂移的问题,本测试装置专门添加标准光源和两个遮光光栏实现照度探头的自校功能;同时该装置内置于防护外壳,以达到保护核心部件避免雨淋或其它可能破坏装置的气候因素,整体提升测试装置的可靠性。

光照度检测装置还包括基于C51单片机开发的控制电路,该控制电路与照度探头、双向转角电机及标准光源对应连接,控制电路可控制双向转角电机、标准光源通断以及照度探头采集照度值并临时存储,再通过GPRS或ZigBee无线通信方式将所测得的光照度值远程传输至上位机进行数据存储及跟踪分析。

2现场光衰测试结果分析

利用本单位自有道路建设了一条长120米,可安装12盏LED路灯的现场测试道,并在LED路灯测试道分别安装了电参数测试模块和间隙性光照度测试装置,实时监测LED路灯在半年来的工作电压、有功功率和相对光衰等参数变化情况。

例如某LED路灯在近3个月的监测结果分别如图3~图5所示。

图3 工作电压变化曲线

图4 有功功率变化曲线

图5 相对照度 (光衰) 变化曲线

图5反映出该LED路灯在近3个月的运行中出现一定程度的光衰,最大光衰约6%,同时通过线性回归计算得到的趋势变化直线反映该LED路灯的光通维持率基本上一直处于下降通道。

电参数和光衰变化曲线通过归一后得到的变化曲线如图6所示,分别对有功功率和相对照度进行线性回归计算得到的趋势变化直线反映两者同时处于下降通道,但对引起LED路灯光衰的因素是多方面的,还需要进行大量的相对光衰现场测试。

若要得到引起光衰的相关因素或找出这些参数的相关性,还需要结合其它因素的监测数据进行数据挖掘分析才能确定引起LED路灯光衰具体是哪些主要因素。

图6 归一化后的变化曲线

从测试结果得出间隙性光照度测试装置确实实现了对LED路灯现场光衰连续有效监测,基于间隙性光照度测试装置的LED路灯相对光衰测试方法是可行的。

3结论

本文提出的基于间隙性光照度测试装置的LED路灯相对光衰测试方法,既弥补了LED路灯的现场光衰测试技术空白,通过自动化克服了LED灯具具有寿命长、缓慢光衰变化的特点,也解决了传统实验室光衰方法普遍存在与实际应用环境差别大、测试时间过长、流程复杂、成本高及不易于监测光衰导致失效的关键时间点等问题。

同时本测试方法还可同理扩展至其它LED灯具的现场光衰测试,为目前各级政府正在大力推动的半导体照明示范工程建设提供有效监控手段,保障照明产品质量和工程质控,具有较好的研究和推广价值。

然而,对于LED灯具现场相对光衰测试及测试装置开发的后续研究工作,重点在通过实验室光衰与现场相对光衰的比对测试测试结果进行验证,进一步提高测试结果的准确性,同时在安装方便性、高复现性等开展后续的深入研究,并通过多种途径进行有效应用推广。

实际节能收益-合肥市采用EMC模式实施LED路灯节能改造方案

关于合肥市采用EMC模式实施

LED路灯改造方案

中国经济发展已进入一个新阶段,节能不仅是国际化的大趋势,也是源于我国国情的迫切需求,是确保我国未来能源安全、促进我国经济社会长期可持续发展的重大战略安排,已成为国家的一项基本国策。而节能技术的示范与推广,更是将节能技术转换成生产力、推动节能科技进步的重要环节,政府肩负着组织、协调和引导的作用。

因此,我国在对节能减排进行立法的基础上,又出台了众多相关政策,对节能减排的领域和要求进行了明确的规定,如在《“十二五”节能减排综合性工作方案》就提出了加强城市照明管理,严格防止和纠正过度装饰和亮化;在《“十二五”城市绿色照明规划纲要》中,我国政府明确提出了在“十二五”期间城市照明节电率要达到15%。同时,要大力提高城市照明设施建设和维护水平、城市道路照明质量和节能水平,而推广使用环保节能的照明产品显得尤为重要。由此可见,做好城市公共照明能源管理,对配合国家节能减排工作具有重大和深远的意义。城市公共照明能源管理是一项系统性的工作,在保证城市交通和生活安全舒适的前提下,利用创新的技术手段,科学、有序、节能地管理和运行城市的公共照明体系。

技术新引擎,“7070+连板玻璃透镜”助力LED道路照明新未来
LED路灯透镜设计

路灯透镜
一路灯透镜材料
玻璃透镜
A. 因为玻璃材料具有耐高温,穿透率高等特点,目前还是有比较大一部分LED路灯厂在使用它
B.但是玻璃因为质量重、易碎、成本高等不足,而使它的使用范围有一定的局限性;我公司开发的平板玻璃透镜把重量、价格和产能都攻刻了。
C.PC或PMMA材料此两种材料同属于光学塑胶类,可以通过注塑完成产品成型,容易实现非球面聚光,减少光斑的黄晕斑现象; 但是PC及PMMA的穿透率仅次与玻璃,耐温也不及玻璃材料的缺缺点; 但是PC及PMMA就物料及生产成本来讲是具有显著的优势;
二, 路灯透镜的规格
I角度规格
a. 因为不同道路有不同的光学需求,比如:路灯高度、路灯杆之间的距离、道路的种类(主干路、干路、支路、庭院小区等),因此路灯透镜的角度要求也不尽相同;
b. 一般来讲,路灯透镜的聚光角度规格为:60度、80度、100度、120度几种; 1(3( 一般主干路路灯杆高度为10-12M,路灯杆相距为30-35M,由此推算出路灯透镜角度需求为100-120度;
II光斑规格
a.圆形光斑,一般应用于庭院小区道路;照射范围及照度要求不是很高; 2(2( 椭圆形光斑(如仁达光电路灯透镜型号ST-V20H-LT2060)一般应用于机动车或非机动车道,有效克效了圆形光斑照射时,圆与圆相接的地方两侧会有一个暗区,整条道路上,光线没有很好的均匀分布或是圆形光斑的一部分光线超出了道路面而没有真正利用起来; 2(3( 矩形光斑,应用于机动车道,有效地利用LED的光线,聚光后的光线均匀分布在路面上,光斑均匀;
b.路灯透镜相对来说要求的是光线利率及聚光角度以及光斑的均匀度,对于路面上的照度值是否达标,此是路灯厂家需要设计考虑的问题(如功率大小、不同品牌LED的选用、不同LM值的LED选用等)
III透镜外型规格
a.单个透镜
b.以多个的单个路灯透镜组合使用(透镜与LED一对一),这种的优点在于它的使用灵活性;
c.比如:想选多少个LED就使用多小个LED透镜,想怎么排列(lay out)就怎么排列;
IIII路灯透镜模组(多头)
a.为了有效的利用灯具的空间,降低灯具的结构大小及重量,目前相当一部分厂家都首先路灯透镜模组,其中又以4*7的结构28头为多;
b.路灯透镜模组还可以配合实现灯具的防水结构;


LED道路照明系统的光学设计及发展趋势
1、LED道路照明系统的背景介绍
为了满足城市道路照明设计标准,传统的道路照明灯具往往采用耗电200瓦以上含水银的灯泡。相比之下,到2009年,市场上发光二极管(LED)的光学效率已经超过了100lm/W,这意味着采用LED作光源的路灯,其耗电量将会大大的减少。由于LED的超长寿命、不含汞和节能的特性,采用LED作光源的路灯来取代传统的LPS(低压钠灯)或MH(金属卤化物灯)是很好的选择。目前,LED路灯在世界上各个国家都进行了测试。为了解决能源紧缺和温室气体的排放问题,LED路灯在一些地方已经实用化,其中中国、北美以及欧洲的一些地区和都市的政府进行了积极的推广。
由于市场上出厂的LED大部分都是呈郎伯型(Lambertian distribution)分布,中心光强比较强,而且是对称的圆形光斑分布,不能直接用于道路照明。为了满足城市道路照明设计标准,LED路灯需要进行二次光学设计,以产生一个长方形、均匀分布的光斑,其配光曲线需要呈蝙蝠翼的形状。另外,光学设计的好坏直接决定了LED路灯的效率,有的LED路灯加上了设计不好的二次透镜之后,有些光在透镜里面多次反射后损耗掉了或者是不能配到有效的区域,有些二次透镜虽然光斑形状和均匀度都可以,但出光效率却降低了将近一半。还有,光学设计的好坏也均定了LED路灯有无眩光,有的设计得不好的透镜,虽然也可以产生一个长方形、均匀分布的光斑,配光曲线也可以呈蝙蝠翼,但由于没有采用截光设计,导致沿道路方向75~90范围的出射光还是很多,这样就会给远处的车辆或行人造成眩光。
好的光学设计应充分利用LED光源面积小这一优点,充分考虑光的利用率,将所有从LED芯片发出的光都分配到路面上,形成一个均匀度好、无眩光、配光曲线呈蝙蝠翼的光斑。本文将基于这些因素来探讨LED道路照明系统的光学系统设计及发展趋势。
2、 自由曲面二次光学的设计方法
由于道路照明要求路灯的光斑是长方形,在垂直于道路的方向,其出射的光束是会聚的,而沿着道路的方向,其出射光束是发散的,并且有一个很大的视角。对于这种一个方向是会聚而另一个方向是发散的配光,那么所对应的透镜,其在垂直于道路方向的剖面应该是个正透镜,而沿着道路的方向的剖面应该是个负透镜,所以透镜的整体可以用一个不规则的自由曲面来表述。
利用上述的(1)~(9)关系式,结合曲面控制网格的节点法线矢量的匹配法,可以计算出曲面上各个点的法线矢量,从而得出各点的轮廓线,进而构成完整的自由曲面。具体的曲面控制网格的节点法线矢量的匹配法如以下所述:
当曲面建模完成之后,将透镜的3维模型输入到光度分析软件例如LightTools[4]中进行光线追迹和光度分析,图 5为透镜的计算机模型及光线追迹,这里模拟采的LED模型为光通量
图8为整个LED灯头的计算机建模及光线追迹。因为长方形光斑及蝙蝠翼配光曲线的配光早已在单颗透镜上实现,灯头的结构只要把这些二次透镜模组按照相同的方向排列组装在PCB上即可,这样使得LED路灯的散热比较容易实现。只要这些透镜模组的方向一致,PCB板的形状可以是个种各样的,譬如椭圆形、长方形、星形、花形或动物形,不影响整体灯头的配光结果。
LED灯头在12米远处的光斑形状和照度分布如图9所示,图10为此灯头的光强的远场角度分布,由图中可见,整灯的光斑形状及配光曲线的形状同单颗透镜是一样的,不同的是整灯的照度值和辐射强度值根据LED数量多少乘一个比例。
3、 LED道路照明系统的光学技术的发展趋势
由于所谓的二次光学是在加在LED原有的一次光学透镜之上的用来配光的二次光学透镜,二次光学和一次光学之间或多或少的总存在一些耦合损耗的不利因素。随着封装技术和精密注塑成型技术的进步,用来配光的二次光学和LED芯片可以直接封装在一起,以消除这部分的耦合损耗,即直接在一次光学透镜上作配光。未来LED路灯的配光的趋势有以下两种: 3.1 直接在一次光学透镜上作配光
由于直接在LED的一次透镜上面完成了配光设计,单个LED光学模组的尺寸大大的减小,并且大大减少了二次光学透镜所带来的光效上的损耗,从而可以大大简化LED路灯的装配机构。
图13单颗LED模组的光线追迹
一次光学透镜的曲面计算采用同上述的二次光学透镜的曲面一样的计算方法,计算结合了边缘光学原理以及曲面控制网格的节点法线矢量相匹配的方法,曲面的各网格线的轮廓经计算之后,再利用3维造型软件蒙上蒙皮,填充后生成透镜实体。一次透镜的建模完成之后,再将LED光学模组的实体输入到LightTools软件中进行光线追迹如图13所示。
为整灯的建模及光线追迹,由于没有尺寸较大的二次光学,灯头的结构变得比较简单而且尺寸可以做得比较小(在散热允许的条件下)。灯头的组成只要把这些LED模组按照相同的方向排列组装在PCB上即可。
LED灯头在12米远处的光斑形状和照度分布如图17所示,图18为此灯头的光强的远场角度分布,由图中可见,整灯的光斑形状及配光曲线同单颗透镜是一样的,不同的是整灯的照度值和辐射强度值根据LED数量多少乘一个比例。
3.2一次光学配光透镜的模块化
除了采用分立的二次和一次光学透镜,透镜的配光可以采用模块化的设计,由于透镜采用了模块化的设计,不同数量的模块可以组成不同规格和不同输出功率的符合不同等级道路照明设计要求的路灯。另外透镜模块除了配光的作用之外,还兼顾了防水、防尘,可以直接裸露在外,从而可以省去了最外面的玻璃灯罩,避免了玻璃灯罩所附加的菲涅尔损耗。另外模块化设计的一次配光透镜,由于每个透镜单元的尺寸及透镜单元之间的间距比较小,每个透镜单元可以使用小功率的LED芯片,以解决散热所引起的光衰的问题。
4、结论
本文探讨了一种LED路灯的自由曲面透镜的设计方法,透镜曲面的设计结合了边缘光线原理及曲面控制网格的节点法线矢量的匹配法,设计出来的二次光学透镜的均匀度较好,配光曲线呈蝙蝠翼分布。
由于二次光学和一次光学之间或多或少的总存在一些耦合损耗的不利因素。随着封装技术和精密注塑成型技术的进步,用来配光的二次光学和LED芯片可以直接封装在一起,以消除这部分的耦合损耗,直接在一次光学透镜上作配光是一种趋势。另外透镜的模块化也将是配光技术的一种趋势,由于透镜采用了模块化的设计,采用不同的模块可以组成不同规格和不同输出功率的符合不同道路照明设计要求的路灯。另外透镜模块除了配光的作用之外,还兼顾了防水、防尘,可以直接裸露在外,从而可以省去了最外面的玻璃灯罩,避免了玻璃灯罩所附加的菲涅尔损耗。

道路照明施工的内容

道路照明施工是指对道路上的照明设施进行安装、维护或改建的工作。
道路照明的施工包括以下几个方面:

  1. 照明设备安装:包括安装路灯、电缆、电缆槽、照明控制箱等设备,并连接电源线路。
  2. 设备调试:在安装完成后,需要进行设备的调试工作,确保灯光的亮度、角度和覆盖范围等均符合设计要求。
  3. 线路铺设:将电缆按照设计要求进行敷设,并进行绝缘处理和固定,以确保电力传输的安全和稳定。
  4. 施工安全:道路照明施工需要注意施工人员的安全,在施工过程中需要设置警示标志和警示灯,以提醒过往车辆和行人注意施工区域。
  5. 环境保护:在施工过程中,需要遵守环境保护法规,做好垃圾分类工作,减少对环境的污染。

道路照明施工需要符合相关的技术标准和安全规范,施工人员需要具备相关的专业知识和技能。施工单位应该做好施工组织,合理安排施工进度和资源,确保施工质量和安全。

道路照明施工的内容
道路照明施工的内容
在雨雾天气中公路用什么LED路灯?
在雨雾天气中公路用什么LED路灯?

在雨雾天气中,公路通常使用具有较强光线穿透能力和抗雨雾能力的LED路灯。这些LED路灯通常具有以下特点:

在雨雾天气中公路用什么LED路灯?
  1. 高亮度:LED路灯采用高亮度LED光源,能够提供足够的照明,确保驾驶员在雨雾天气中有清晰的道路视野。
  1. 良好的穿透能力:LED路灯具有良好的穿透能力,能够通过雨雾有效地照亮前方的道路,减少雾气对能见度的影响。
  1. 雨雾透光性:LED路灯的灯罩采用特殊的材料制成,具有较强的透光性,能够使光线更好地穿透雨雾,提高照明效果。
  1. 防水防雾:LED路灯的外壳采用防水防雾设计,能够有效防止雨水和雾气渗入灯体内部,保证路灯正常工作。
  1. 节能环保:LED路灯采用LED光源,具有较高的能效和较长的使用寿命,能够节能减排,降低能耗。
  1. 自动调光功能:部分LED路灯还具有自动调光功能,能够根据光照条件的变化,自动调整亮度,适应不同的天气状况。
在雨雾天气中公路用什么LED路灯
在雨雾天气用什么样的LED路灯?

在雨雾天气中使用哪种类型的LED路灯取决于具体的需求和要求。以下是几个常见的LED路灯类型,可根据不同的需求选择合适的:

  1. 防雾灯:这种路灯专门设计用于雾气或浓雨环境。它们通常具有特殊的灯罩和光学设计,可以减少雾气或雨水对光线的散射和折射。这种路灯能够提供更清晰、更亮的照明效果。
  1. 防护灯罩:对于普通的LED路灯,在雨雾天气中,可以安装透明或特殊材料的防护灯罩来减少雨水或雾气对光线的影响。这些灯罩可以有效保护灯泡和光学元件,同时增加路灯的耐久性。
  1. 高亮度和长寿命LED:选择具有更高亮度和更长寿命的LED灯泡能够在雨雾天气中提供更好的照明效果。高亮度LED能够穿透雾气或雨水,而长寿命LED则可以减少更换灯泡的频率。
  1. 智能控制系统:配备智能控制系统的LED路灯可以根据实时的天气条件自动调节照明亮度。通过使用湿度、温度或降雨传感器等设备,智能路灯可以根据实际情况调整光照强度,以提供适应性更好的照明效果。

避免树木遮挡

对于选择适合雨雾天气的LED路灯,建议咨询专业的照明工程师或生产商,以获取更准确的建议和选择。