LED glass lens /Glass lens street light/Floodlight
光学分辨率有极限吗?

CC:小鹤,你说按照几何光学的定律,是不是我们通过适当的选择透镜的焦距就可以造出很大很大放大倍数的显微镜系统,将任何细小的物体放大到可以清晰观测的程度?
薛定谔的鹤:你想得美,大家都知道光学分辨率越高,系统的精度越高,科学实验获得的信息更精确。但恩斯特·阿贝博士早在19世纪70年代就给光学显微镜的分辨率安排了一个天花板。今天正好一起来学习解读一下这个分辨率极限公式吧。解读阿贝公式前,我们先了解几个概念: 

分辨率

可以将密集的点区分为单个的点的能力。
 

分辨率极限(最大分辨率)

可识别为不同点的最小间距。光学分辨率极限的判定,最早是由物理学家恩斯特阿贝博士在1873年发现,可判定任何光学成像的分辨率理论极限。艾里斑

凸透镜能将入射光聚焦到它的焦点上,但由于透镜口径有一定大小,光线透过时会由于波动特性会发生衍射,无法将光线聚成无限小的焦点上,而只会形成一定能量分布的光斑。中央是明亮的圆斑,周围有一组较弱的明暗相间的同心环状条纹,把其中以第一暗环为界限的中央亮斑称为艾里斑(Airy Disk)。图1为两个等光强的艾里斑从重叠到逐步分开的影像。
 

图1
 ​图2为最简单的双凸透镜显微系统示意图,我们可以看到:把物体靠近眼睛,可以增大孔径角(Angular Aperture)就可以增大在眼睛视网膜上的成像,也就是提高了分辨率。

图2

从光的波动属性分析,物体细节对光的波动的反射才是物体被观察到的根本原因。通过发射波长等于或者小于物体大小的波,它被反射回观察者。而被观测物可以被观测到的最小尺度就是1/2波长,小于这个尺度被观测物将无法反射光波,从而无法被观测。



图3
最终,阿贝博士得出的阿贝简单判定(Abbe Simple Criterion)为:

式中λ为使用光线的波长值,n为光路中透镜对介质的折射率系数,α为入射光束与透镜光轴间的夹角。

​但是在实际应用中,被测物体不是一个点而是一系列物点的集合。每一个物点经过有限直径的透镜后,在像平面上都会产生文中开头提到的艾里斑,如果两个物点的艾里斑重叠到无法分辨,我们则认为这两个物点无法被分辨,图4中让两个等光强的非相干点像逐步分开,当两个点像中心间隔等于艾里斑的半径R,这样的艾里斑可以被认为是物点可以被分辨的最小尺寸,这种不同于阿贝简单判定的方式叫做瑞利判定(Rayleigh Criterion)。
 




图4


那么我们来计算一下按照瑞利判定,可被分辨的艾里斑的半径(也就是可以被分辨的最小尺寸)与生成这个艾里斑的光波波长的关系。图5为原理示意图。
 



图5


中间演算过程涉及到冗长的傅里叶级数变换以及各种函数方程,最终计算结果为:

式中λ为使用光线的波长值,n为光路中透镜对介质的折射率系数,α为入射光束与透镜光轴间的夹角。

普通光学显微镜,为提高分辨率极限(使d 值降低),就需要从两个方面着手:

一、减小λ值

可见光的波长范围:390nm~760nm,取可见光的波长为较短数值λ=400nm时(相当于紫色光),d≈200nm=0.2μm,这基本上可认为是一般光学显微镜的最高分辨能力了。

图6
在可见光波段想要获得更好的分辨率极限,显微镜系统在设计时就要尽量选用蓝紫光线作为照明光源。

二、增大n•sinα的值,这个值也被标为NA值(数值孔径)

选用折射率的更大的介质,以及增大孔径角有助于提高显微镜的分辨率。显微物镜上都会标识NA值(如图6中标识NA值为0.055),同等放大倍率的物镜,更大的数值孔径可以获得更好的分辨率。

图7恩斯特·阿贝博士是耶拿最有名的物理学家、光学家,在人类历史上留下的宝贵财富远不止阿贝公式。还有阿贝正弦条件,阿贝数,阿贝最早在蔡司推行了8小时工作制,成为现代雇员保障制度的先导者。为了纪念阿贝博士的伟大贡献,位于月球背面的一座大约形成于30多亿年前的撞击坑被命名为阿贝环形山。在耶拿,卡尔蔡司,恩斯特阿贝,以及奥托肖特三人被称为耶拿三杰,也代表着德国光学之城耶拿的辉煌成就。

LED玻璃透镜镀膜
光机系统中的螺纹参数

在光机产品选型过程中,我们经常看到涉及到各种螺纹,接口,连接固定方式的描述,这些描述具有哪些含义,本文将以图文实物的形式一一展开,让读者对光机械中的接口螺纹基本常识有一个全面的了解。

一、螺纹基础知识

螺纹最核心的三个要素是牙型,直径和螺距。

1,牙型
在通过螺纹轴线的剖面区域上,螺纹的轮廓形状称为牙型。有三角形、梯形、锯齿形、圆弧和矩形等牙型。

图1,螺纹牙型

在光机系统中,一般使用普通三角形螺纹,三角形螺纹又分为粗牙和细牙两种

2,公称直径

螺纹有大径(d、D)、中径(d2、D2)、小径(d1、D1),在表示螺纹时采用的是公称直径,公称直径是代表螺纹尺寸的直径,普通螺纹的公称直径就是大径。

3,螺距

螺距(p)是指相邻两牙在中径线上对应两点间的轴向距离。

二、在光机系统中螺纹的常用标注方法


螺纹代号    大径 x 螺距(粗牙不注) 旋向 (右旋不注)
 

以下是举例说明

M8

普通粗牙三角螺纹,大直径8mm,螺距1.25mm(粗牙螺距默认不标注)右旋(默认不标注)

M6x 0.75

普通细牙三角螺纹,大直径6mm,螺距0.75mm 右旋(默认不标注)

在国标螺纹代码表准中,除了标注以上三要素外,还会有旋向,公差代号,旋合长度的标识。

在光桥系统中,或者光学元件安装调整架产品中,我们也能看到螺纹接口描述中还会有“阴”“阳”“内”“外”的标注。这个标注是指螺纹处于本体的外表面还是内表面,外表面的螺纹称为“外”或者“阳”, 内表面的螺纹称为“内”或者“阴”。

图3,螺纹的阴阳内外标注

除了公制标准螺纹,日常在光机系统里还能见到SM螺纹,RMS螺纹以及C螺纹。

这几种螺纹是以英寸为基准进行标注的螺纹规格,大径和螺距都是以英寸为基准进行细分。


螺纹代号(大径英寸 — 每英寸牙数)

RMS螺纹结构在光机系统中一般用于连接显微物镜。

C螺纹结构在光机系统中一般用于连接镜头或者工业相机。

三、各种螺纹实物及应用场景展示

1,柱头螺丝,紧定螺丝和转接螺丝实物

图4,不同螺纹规格的柱头螺丝,M4,M6


图5,不同螺纹规格的紧定螺丝,平头,锥头,M3,M4,M6


平头紧定螺丝一般用来连接两个光机部件,锥头紧定螺丝一般在笼式系统中将笼片定位固定在笼杆不同位置。


图6,转接螺丝及应用

转接螺丝的作用:

内螺纹转外螺纹和外螺纹转外螺纹两种类型,为M3、M4和M6螺丝相互之间灵活转接提供便利,无需再购买不同接口规格的光机部件。


图7,M6螺纹柱头螺丝

图8,M4螺纹锥头紧定螺丝
 

2,光桥系统和笼式系统中的SM螺纹,显微物镜的RMS螺纹,镜头及相机的C螺纹实物

在光桥系统或者笼式系统中一般会出现SM系列的螺纹参数。

下图是SM1螺纹的的笼式系统结构和光桥系统结构实物图,适配压圈也是SM1螺纹,用于安装1英寸的光学元件。


图9,光桥系统和笼式系统中的SM1螺纹

RMS螺纹一般用于显微物镜的连接,RMS螺纹的大径为0.8英寸 即20.32mm, 每英寸36牙,螺距为0.705mm。

图10,显微物镜上的RMS螺纹

C螺纹卡口一般应用在成像领域,镜头,相机以及相应延长环大多采用此螺纹卡口。

C螺纹的大径为1英寸,即25.4mm,每英寸32牙,螺距为0.794mm。


图11,工业镜头的C口螺纹

本文上述螺纹种类以及对应的螺纹应用场景基本涵盖了我们日常接触的光机系统中的螺纹规格。读懂并且了解这些螺纹规格以及应用场景有助于我们快速选购和匹配光机械件,避免不必要的选型错误。
更多光机元件选购请浏览光机元件

不可不读的光学镜头基本参数和术语解释

成像镜头是光学产品的重要的组成部分,它的作用是将目标物体成像在图像传感器上。本文将继续对成像镜头的参数和术语进行说明解释,帮助我们更好的理解镜头的性能特点,针对不同的应用场景完成镜头的选型搭配。

  1. 焦距:

定义:焦距是指镜头的光学中心(光学后主点)到成像面焦点的距离,焦距是光学系统中衡量光的聚集或发散的度量方式。

平行光通过镜头汇聚于一点,这个点就是所说的焦点,是镜头的重要性能指标。一般常用的工业镜头的焦距为8mm、12mm、16mm、25mm、35mm、50mm等。焦距的大小决定着视场角的大小,焦距数值小,观察的范围大;焦距数值大,视场角小,观察范围小。

如何选择合适的焦距的定焦镜头?请看镜头工作距,离焦距,传感器和视野尺寸的计算关系。

图1:镜头焦距与工作距离选择

后焦距:镜头最后一个镜片表面顶点到焦点的距离。因对焦时镜头后镜片可能移动,一般标注无穷远对焦时的后焦距,也就是最小后焦距,有限距离成像时后焦距会增大。

2.光圈与景深:

光圈定义:光圈F值又称为光圈数,是镜头焦距与有效孔径(即光圈)之比。

F值衡量光学系统通光量的大小。F值越小进入系统的光线就越多,图像亮度越高。

图2:光圈与景深

一般镜头会标注最小光圈数,即最大通光孔径。如F1.4,F1.8,F2.0等。
光圈的调节会有两个主要影响:成像亮度与景深。
光圈越大,进入系统的光线越多,图像亮度越高;光圈越小,进入系统的光线越少,图像越暗。
光圈越大,景深越小,虚化明显;光圈越小,景深越大。

图3:大光圈通光量大,景深小虚化明显

景深定义:
镜头对某一物平面对焦后,在对焦平面的前后都有一段能清晰成像的范围,分别称为前景深和后景深。景深=前景深+后景深;


图4:景深与焦深

成像光束未会聚于一点,在像平面上形成一个扩散的圆形投影,称为弥散圆。
景深ΔL=ΔL1+ΔL2
       δ:弥散圆直径;
       f :焦距;
       F:光圈F值;
       L:工作距离;

       减小光圈(增大F值)、增加工作距离、选择小焦距镜头均可使景深增加。

3.视场角:

定义:以光学镜头为顶点,以被测物体通过镜头的较大成像范围的两边缘构成的夹角叫做视场角。
视场角的大小决定了镜头的视野范围,视场角越大,视野就越大,光学倍率也就越小。
视场角与传感器尺寸有关,镜头的视场角应标明标准传感器尺寸。
以联合光科16mm 2/3″ 5M 定焦镜头 为例:

传感器尺寸视场角
(对角×水平×垂直)
对象大小
(在最近对焦距离处)
2/3″38.0°×30.8°×23.4°145.6×116.5×87.3mm
1/2″28.1°×22.7°×17.1°105.9×84.6×63.5mm
1/3″21.3°×17.1°×12.9°79.4×63.5×47.6mm

表1:16mm镜头传感器与视场大小
  
使用某一款相机,在相同工作距离下拍摄,不同焦距的镜头也会有不同的视场角。

图5:同款相机,相同工作距离,不同焦距的拍摄效果(注:图中所标为水平视场角)

视场角与焦距有关,在使用相同感光元件的情况下,搭配的镜头焦距越长,视场角越小。

图6:镜头焦距与视场角

4.畸变

定义:镜头对被摄物体所成的像相对于物体本身的失真程度称为畸变。
理想的镜头成像,物平面与像平面上的放大倍率是固定的,但实际这一性质只有在图像中心区域的小视场才具备。图像的放大倍率会随着视场增大而变化,使成像产生失真。
畸变通常分为两种:
枕形畸变:镜头成像画面呈向中间收缩的失真现象。
桶形畸变:镜头成像画面呈桶形膨胀状的失真现象。
畸变会使图像变形,但不影响成像分辨率,可以使用软件校正。畸变率越低表示镜头的光学素质越好。

图7:枕形畸变与桶形畸变

5.最大传感器尺寸

如下图所示,镜头在像平面的成像是圆形,但接收图像的传感器通常为矩形,所以最终保存的图像是矩形。

图8,圆形相面与矩形传感器

以下图为例,镜头成像尺寸会按照通用传感器的尺寸设计,使得圆形像面外沿与矩形传感器四角正好相接,这个传感器尺寸就是该镜头的最大传感器尺寸(下图绿色2/3″传感器)。如果使用更大尺寸的传感器(下图紫色1″传感器)四个角会在镜头圆形像之外。使用更小尺寸的传感器(下图粉色1/1.8″传感器),传感器只采集到圆形像较小区域,视场和视场角会变小。

图9,11mm直径像面与不同尺寸传感器的匹配效果

市面上通用传感器的名称表述,既不是传感器的任何一条边长也不是对角线长度,这样的尺寸标注难以形成具体尺寸的概念。
下表是市场上常见的通用传感器尺寸规格信息,传感器对角线长度匹配镜头的像面尺寸的那款传感器就是镜头的最大传感器尺寸。

传感器尺寸对角线长度/mm水平长度/mm竖直长度/mm
1/4“43.22.4
1/3“64.83.6
1/1.8“97.15.3
2/3“118.86.6
1“1612.89.6
4/3“2217.613.2

表2,常见通用传感器

6.出瞳,入瞳与孔径光阑

出瞳是限制出射光束的有效孔径,是孔径光阑被后方光学系统所成的像;出瞳距离是出瞳与镜头最后一个镜片表面的距离;出瞳直径就是孔径光阑对后方光学系统所成的像的大小。
入瞳是限制入射光束的有效孔径,是孔径光阑被前方光学系统所成的像;入瞳距离是入瞳与镜头第一个镜片表面的距离;入瞳直径就是孔径光阑对前方光学系统所成的像的大小。
孔径光阑:光路中所有可以限制光束的开孔屏或者透镜边框都可称为光阑,其中最终限制光路入射光束大小的光阑称为孔径光阑

图,10,入瞳,入瞳距离,孔径光阑

以上图光路为例,1,2镜片边缘,3光圈都可以限制入射光束,图中能通过1号镜片的光束只有一部分能进入2号镜片,通过2号镜片的光束只有一部分能进入3号光圈,所以3号光圈最终限制能进入镜头成像的光束大小,也就是这个光路的孔径光阑。在A点观测时,3号光圈被1号和2号透镜放大成4号虚像,A点发出的光经1号2号透镜进入3号光圈,与光从A点直接进入4号等效。把光圈对两个透镜所成的4号像称为入瞳,入瞳与镜头第一个镜片之间的距离就是入瞳距离。

7.MTF曲线和分辨率:

镜头的分辨率是指镜头可以分辨两个靠近的点的能力,也称为解析力。镜头分辨率通常使用MTF曲线表征。MTF曲线表示空间频率与传递函数值的关系。横坐标表示空间频率,即每mm线对数,可以代表两个点的靠近程度。纵坐标表示传递函数代表对比度,数值为1,线对对比明显,可清晰分辨;数值为0,线对没有反差无法分辨。

图4,线对对比度1和0.6的图像

图5,某型号镜头MTF曲线

图5中有多条曲线,每条曲线都标注像高。0mm表示轴上MTF数值,4.5mm表示轴外像高4.5mm的MTF数值。不同像高的MTF曲线趋势一致性高,不分散,表示镜头轴上轴外一致性高。黑色直线代表受物理极限限制的MTF数值。

传感器分辨率一般指横向与纵向像素数乘积,如500万像素,传感器横向与纵向像素数为2560×1920。单个像素即像元的尺寸,与传感器的尺寸和分辨率相对应。可以根据表1传感器尺寸除以像素数量,得到像元尺寸。如2/3“ 500万传感器,像元尺寸3.4μm。镜头的分辨率应与像元尺寸匹配。通常按照线对尺寸的一半选择像元尺寸

以1/1.8“小像元镜头为例,是230lp/mm高分辨率设计,线对尺寸1000/230μm=4.34μm,匹配像元尺寸为4.24/2μm=2.17μm,可以匹配市面上2.2μm的传感器。选择比2.2μm小的像元,并不能带来更丰富的细节

8.主光角

镜头主光角CRA(Chief Ray Angle),表示镜头主光线与光轴的夹角。主光线是从被观测物体发射,经孔径光阑的中心到成像的光线。
传感器主光角CRA,表示可以聚焦到像素上的光线的最大角度。超过此角度的光束不能完全被传感器接收。一般要求镜头CRA不大于相机传感器CRA

图6,传感器主光角

a.像素上方聚光透镜,b.金属导线,c.光电转换区域。

图中1号光线主光角超过传感器CRA,光线无法到达光电转换区域;2号3号主光角小于传感器CRA,光线可以到达光电转换区域。

9.远心光路结构与远心度

远心光路有物方远心,像方远心和双远心三种结构。

图7,物方远心光路

孔径光阑在像方焦平面上,进入镜头的主光线都通过光阑中心的像方焦点,在物方这些主光线都平行于光轴。即只有平行于光轴的光线才能通过光阑,被测物距离镜头远近,成像大小一致。

图8,像方远心光路

孔径光阑在物方焦平面上,进入镜头的主光线都通过光阑中心的物方焦点,在像方这些主光线都平行于光轴。通过光阑的光线通过镜头都平行与光轴,传感器与镜头距离不影响成像大小。

图9,双远心光路

光阑所在的平面,既是物方焦平面,也是像方焦平面。物方主光线与像方主光线都平行于光轴。
远心度:远心镜头主光线偏离于光轴的角度,角度越小远心度越好,成像的倍率误差就越小,测量也就越精确。

10.卡口

主流工业镜头一般使用C卡口,卡口螺纹M25.4×0.8
具体名称和,对应法兰距,以及螺纹尺寸请见下表:

卡口机身相场定位(法兰)距离接口类型
C17.526mm螺纹M25.4×0.8
CS12.5mm螺纹M25.4×0.8
F46.5mm三爪卡口
M42(SLR型)45.5mm螺纹M42×1
M42(T型)55mm螺纹M42×0.75
M5811.48mm螺纹M58×0.75
M7211.48mm螺纹M72×0.75

11.光学总长与变焦,调焦

镜头第一片镜片表面到像平面的距离就是镜头的光学总长。

图10,光学总长示意图

以上是成像镜头的参数名词解释图文说明,基本涵盖了日常工作中所能遇到的各类镜头相关的专业术语。

光学玻璃镜片抛光工艺
一文读懂光学元件面型检测报告

现代光学工程向一大一小两个方向发展,“大”是指大口径拼接技术,离轴非球面技术,往往应用于大型望远镜、空间望远镜、惯性制约聚变(ICF)装置。“小”是指亚纳米级高精度面型,低中高频粗糙度,多应用于DUV、EUV光刻设备。 高端光学系统的研制需要高精度检测技术,高精度的检测技术支撑着光学系统的确定性制造和集成,以及光学系统仿真技术。目前行业公认的准则就是没有检测就没有控制,更没有确定性加工。 我们日常接触的光学元件性能参数中的面型规格有λ/4或者λ/10,这个参数是如何测定并且指代哪些具体的物理指标,今天通过本文中的一份面型检测报告来解读。

目前行业内的面型检测干涉仪产品,主要是Nikon,Zeiss,和Zygo三个品牌。干涉仪的工作原理都是利用准直光线照射标准参考面(平面,球面,非球面)和被测面(平面,球面,非球面)利用两束反射光的干涉成像进行检测,具体细节不再赘述。本文以Zygo的激光干涉仪为例说明面型检测报告中的核心干货。 启动干涉仪的 MetroPro软件,设置好测试程序(如显示剖面线,3D模型,PSD,泽尼克系数等)后就可以启动检测,检测报告页面包含的信息有以下几个方面。 1. PV数据PV值代表被检测表面上的最高点和最低点之间的高度差。RMS为检测区域内N个数据点的平方和除以N以后的开方值,称为均方根。此元件被测面的PV值为62.32nm,rms值为8.295nm。 2. 3D模型MetroPro软件可以利用被测面的采样数据点转坐标,生成3D模型,直观的表现出面型的凹凸特性。红色为高点,蓝色为低点。 3. PVr数据由于干涉仪中使用的探测器的空间分辨率不同,噪声、鬼像条纹和亮点都会对它产生影响,仅用相机上的两个点(峰谷)来表达测量结果可能不是很精确。PVr是一个新提出的稳健振幅参数,它的计算方法是36阶Zernike拟合的PV值+ 3倍残差的均方根值。此元件按照PVr参数计算的数值为45.98+3*2.97=54.9nm。  4. XY轴剖面曲线图在第一部分的PV数据图中,被检测面的X和Y坐标轴的剖面数值曲线显示在此图中,绿色线表示X轴,蓝色线表示Y轴。 5. 干涉条纹图
这个干涉条纹就是被测面和基准面的干涉条纹图像,理想的干涉条纹应该是等间距且平行,条纹的偏转情况代表着被测面与基准面的凹凸关系。 除了小型标准光学元件(直径<100mm)的入库质检,在大型光学元件的制造过程中,干涉仪还起到过程监控的作用,由于大型光学元件材料比较昂贵,每道加工工序都要求严格控制。大型光学元件加工过程为粗磨、精磨和抛光这三道工序,粗磨和精磨工序需用三坐标进行外形尺寸测量,抛光工序主要用干涉仪监测工作面面型。  联合光科销售的现货标准光学元件在入库前,都会使用干涉仪检查元件工作面是否符合面型规格要求,普通光学元件工作面面型精度不低于λ/4,高精度产品的工作面面型精度不低于λ/10,我们确保我们的现货标准光学产品符合标称面型指标。

光学透镜加工由于精度高,加工对象特殊,所以必须在专门的光学车间内进行。因此,除了遵守一般的机械加工规则外,还必须遵守光学加工所特有的安全操作要求。 光学透镜车间的特点在光学零件加工过程中,大多数工序对温度、湿度、尘埃、振动、光照等环境因素是敏感的,特别是高精度零件和特殊零件的加工尤其如此。 因此,光学车间都是封闭形的,并要求恒温、恒湿、限制空气流动、人工采光,防尘。 01 温度对光学工艺的影响。恒温是光学车间一个明显特点之一。这里包括恒温温度及波动范围两个问题。光学车间各工作场所由于要求不同,对恒温温度及其波动范围的要求是各不相同的。 (1)温度对抛光效率与质量的影响由于抛光过程中存在的化学作用随温度升高而加剧,因而升温会提高抛光效率。但由于古典工艺中采用的抛光模制模用胶、粘结胶等主要由松香和沥青按一定配比制成,一定的配比只在一定的温度下使用。而且它们对温度的变化较为敏感,温度过低,抛光模具与零件吻合性不好;温度过高,抛光模具抛光工作面变形。这两者将使加工零件的精度难以保证,具体表现在光圈难以控制和修改。实践得出:抛光间的温度一般应控制在22℃±2℃为宜。 (2)检验对室温的要求温度的波动直接影响检验精度。一方面因为精密光学仪器对温度的波动很敏感;另一方面被检零件不恒温时,检具和零件间有温差会直接影响读数精度。所以,检验室必须恒温,并且也应控制在22℃±2℃范围内。 02 湿度对光学工艺的影响。在光学零件加工过程中,凡要求恒温或空调的地方,均因控制湿度所需。因为,水份蒸发速度直接影响湿度恒定状态。湿度过低,易起灰尘,零件表面清擦时也易产生静电而吸附灰尘,影响其光洁度。特殊零件如晶体零件的加工以及光胶工艺等,对湿度的要求尤为严格。光学加工过程中室内温度一般应控制在60%左右。 03 防尘。由于光学零件对表面质量即表面光洁度和表面疵病有极高的要求,所以光学车间的防尘问题也特别突出。灰尘在抛光时会使零件表面产生道子、划痕、亮丝;在镀膜时,会使膜层出现针孔、斑点、灰雾;在刻划时会引起刻线位置误差、断线等。灰尘来源主要有:外间空气带入;由工作人员衣物上落下(粒径一般在l一5μm左右,直径小于1μm的灰尘,往往不能依靠自重降落,而长时间悬浮于空气中,影响产品质量);不洁净的材料、辅料、工夹具等带入;生产过程中产生的灰尘(光学车间的净化条件,若按室内含尘的重量浓度要求,应控制在毫克/米3的数量级。胶合室的要求更严,一般以颗粒浓度作为要求,达到粒数/升的数量级)。
偏振的原理及偏振元件的应用

光是一种电磁波,电场的振动方向与传播方向垂直。普通光线的电场振动方向是随机的,太阳光,卤素灯光等都是如此。那么如果在光传播方向的垂直截面上,电场随时间的变化是明确的,则这样的光线称为偏振光。在光学设计中,工程人员往往更多关注光的波长和强度,而忽略了其偏振指标,其实偏振是光的重要特性,利用光的偏振性可以实现多种应用。本文将介绍偏振的原理和类型,以及几种典型的工程应用。

上文提到,光是一种电磁波,电磁波是典型的横波,电场(E)和磁场(B)的方向与光的传播方向(Z)垂直,根据电场的方向不同,我们将偏振光分为三种类型。

图1 光的电磁波属性0线偏振光

光的电场方向沿传播方向限制在一个平面上(y-z平面),其大小随相位变化,在垂直于传播方向的截面上(x-y面),光矢量端点的轨迹是一条直线。

图2 线偏振光示意图02  圆偏振光

光的电场由两个相互垂直,振幅相等但相位差为90°的线性分量组成。圆偏振光在传播过程中,其矢量的大小不变,方向规则变化,在垂直于传播方向的截面上(x-y面),光矢量端点的轨迹是一个圆,根据旋转方向,分为左手或右手圆偏振光。

图3 圆偏振示意图03  椭圆偏振光光的电场由两个不同振幅和/或不是90°相位差的线性分量组成。椭圆偏振光的光矢量的大小和方向在传播过程中均按规则变化,在垂直于传播方向的截面上(x-y面),光矢量端点轨迹是椭圆。这是偏振光的最一般描述,并且圆形和线性偏振光可以被视为椭圆偏振光的两种极端情况。

图4 椭圆偏振示意图

了解了三种不同的偏振光类型,我们可以思考如何人为调整光的偏振态,能够改变光的偏振状态的器件都被称为偏振器,目前常用的偏振器大致可以分为吸收/反射型偏振器(如线栅偏振器,二向色偏振器)和分光型偏振器(如双折射偏振器。)
01  线栅偏振器

线栅偏振器是常见的反射型偏振器,它由相互平行的规则细金属线阵列组成,然后将其放置在与非偏振入射光束呈90度角的平面内。沿着这些线阵格栅振动的光被反射,而垂直于这些线阵格栅振动的光被传输。

图5 线栅偏振片原理图

其他反射型偏振器利用特定角度(布儒斯特角)入射时,反射光的偏振态完全是与入射面垂直的S偏振,折射光的偏振态几乎都是与入射面平行的P偏振。

图6 布儒斯特角原理图02  二向色偏振器

二向色偏振器是吸收型偏振器,它传输所需的偏振并吸收其余部分,其原理是单向拉伸掺杂特殊复合材料的基板,这样复合物大致在一个方向上排列,光的偏振方向与该方向一致时会被强烈吸收,而垂直于该方向的光则被透过。这类偏振器使用广泛,从低成本层压塑料偏振器到高成本玻璃纳米粒子偏振器,二向色偏振器可以做很大的尺寸,因此非常适合成像和显示应用。

图7 二向色偏振器示意图03  双折射偏振器

双折射偏振器属于分光型偏振器,它的工作原理是利用双折射晶体的特性,对不同偏振态光束的折射率不同。由于对s偏振光和p偏振光的折射率不同,入射的非偏振或椭圆偏振光在进入晶体时将分裂成两个单独的光束。大多数双折射偏振器由两块双折射晶体棱镜以一定的连接角度和晶轴角度组合而成。这类偏振器几乎不吸收或反射入射光束,因此较适合激光应用,它有优异的消光比和宽波长范围,但是价格比较高。

图8 双折射偏振器原理图

以上几种偏振器件可以将非偏振光或者椭圆偏振光人为调整为需要的线偏振光,如果想将线偏振光调整为圆/椭圆偏振光,可以搭配使用1/4波片来实现;如果想改变线偏振光的振动方向或者改变圆/椭圆偏振光的旋向,可以搭配使用1/2波片来实现,延迟波片产品的原理和具体选型可参考联合光科往期技术文章波片的选型和常规指标介绍

实现了对光线偏振态的控制,我们可以将这种控制用于各种成像系统中,以消除光散射产生的眩光,消除反射物体的反光点,增加对比度。经过优化的成像有助于更好的识别表面缺陷或者其他隐藏的问题。也可以利用物质的非均匀性产生的不同折射率对偏振态的影响,用偏光检测仪检测样品的内部应力状态或者双折射率与厚度关系。
 

1.  机器视觉系统使用场景下,被摄物体和相机传感器之间的许多随机杂散光将被摄物的许多细节遮蔽了,将线偏振片安装在机器视觉系统的镜头前和光源前,可以消除模糊的眩光,提高图像质量进而提高机器视觉软件分析测量的准确度。
 

2. 专业摄影中,水面以下物体的反射光线会被空气/水交界面被反射光线所掩盖,很难拍摄清楚水面以下的物体,在摄影摄像镜头上增加滤光片可以大大减少水面的反射眩光更清晰的观察水下物体的细节。
 

3. 除了对散射眩光,高反射光的抑制消除提高图像质量以外,偏振检测技术还可以检测材料内部应力。在玻璃和塑料等非晶透明固体中,材料中温度和压力分布产生的内部应力会导致材料特性的局部变化,从而使材料具有双折射和非均匀性。90°交叉的偏振片之间无内部应力的被测样本应产生一个完全暗场,当样本存在内部应力时,折射率的局部变化将改变偏振角,从而导致透射率变化。
 

对于偏光器件的工程应用还有很多,本文不一一举例。在科研领域中,线偏振器件常与1/4延迟波片、漩涡波片搭配使用,产生圆偏振光束和特定拓扑何数的涡旋光束用于各种科学实验。

常见光学材料介绍

所有光学制造过程的第一步都是选择合适的光学材料。光学材料的光学参数(折射率,阿贝数,透过率,反射率)、物理特性(硬度,形变,气泡度,泊松比)、甚至温度特性(热膨胀系数,折射率VS温度)都会影响光学部件及系统的性能。本文将简单介绍常见的光学材料以及各种材料的特点。

光学材料通常有三大类:

光学玻璃、光学晶体、特种光学材料

01 光学玻璃

光学玻璃是一种可以传输光线的非晶态(玻璃态)光介质材料。光线通过它以后可改变传播方向、相位及强度等,常用于光学仪器或光学系统中棱镜、透镜、反射镜、窗口片、滤光片等光学元件制作。光学玻璃具有高度的透明性、化学稳定性及物理学(结构和性能)上的高度均匀性,具有特定和准确的光学常数。光学玻璃在低温固态下仍保留了高温液态的无定形结构,理想情况下玻璃内部沿各方向理化性能(如折射率、热膨胀系数、硬度、热导率、电导率、弹性模量等)相同,称为各向同性。

现在光学玻璃的生产厂商,主要有德国的肖特(SCHOTT)、美国的康宁(Corning)、日本的小原(OHARA)、国内的成都光明(CDGM)。在紫外波段我们常用的光学玻璃有紫外熔融石英(UVFS),常用的石英材料有国内的JGS1、JGS2、JGS3,Corning7980以及小原的高质量石英玻璃(SK-1300、SK-1310、SK-1320L、SK-1321等),我们的光学元件一般采用的是JGS1,其在180nm开始具有较高的透过率。Corning7980的均匀性好、气泡杂质含量少,所以多用于激光元件中,可以提供更高激光损伤阈值。可见光及近红外波段,常用的光学玻璃材料有肖特的N-BK7、浮法玻璃B270、成都光明的H-K9L等。N-BK7和H-K9L具有相似的性质,可以互相代替。它们在可见光和近红外(350 nm – 2.0 µm)提供高透过率。H-K9L精退火光学玻璃是我们高质量光学元件中最常用的玻璃。H-K9L精退火光学玻璃是一种硬质玻璃,能够承受多种物理和化学刺激。它比较耐刮而且耐化学品。由于气泡少、杂质含量低,因此它很适合制造精密透镜、窗口片、棱镜等元件。

成都光明各牌号光学玻璃的折射率和色散图

常见牌号光学玻璃的折射率曲线

常见牌号光学玻璃的透过率曲线

02 光学晶体

光学晶体是指用于光学介质材料的晶体材料总称。由于光学晶体的结构特性,可广泛用于制作各类紫外、红外应用领域的窗口片、透镜、棱镜。按照晶体结构又分为单晶和多晶。单晶材料具有更高的晶体完整性和光透过率,以及较低的输入损耗,因此常用的光学晶体以单晶为主。

◆ 常见的紫外、红外晶体材料有:石英(SiO2)、萤石(CaF2)、氟化锂(LiF)、岩盐(NaCl)、硅(Si)、锗(Ge)等。

◆ 偏振晶体:常用的偏振晶体有方解石(CaCO3)、石英(SiO2)和硝酸钠(硝石)等。

◆ 复消色差晶体:利用晶体特殊的色散特性制造复消色差物镜,如萤石(CaF2)与玻璃组合制成复消色差系统,可以消除球差和二级光谱。

◆ 激光晶体:可用作固体激光器的工作物质,如红宝石、氟化钙和掺钕钇铝石榴石晶体等。

常见晶体特点对比

晶体材料分天然和人工生长。天然晶体较少,人工生长难度大,尺寸受限,价格昂贵,一般在玻璃材料满足不了的情况下才会考虑,可工作于非可见光波段,应用于半导体,激光等行业。

03 特种光学材料

微晶玻璃是一种非玻璃非晶体的特种光学材料,介于玻璃和晶体之间。微晶玻璃与普通光学玻璃的区别主要是具有结晶的结构,而与陶瓷的主要区别是,它的结晶结构要比陶瓷细得多。具有热膨胀系数小、强度大、硬度高、密度小、稳定性极高的特点,被广泛用于加工平晶、标准米尺、大型反射镜、激光制导陀螺仪等。

微晶材料

微晶光学材料的热膨胀系数可达到0.0±0.2×10-7/℃(0~50℃)

碳化硅是一种特殊的陶瓷材料,也可做为光学材料使用。碳化硅具有刚度比好、热变形系数小、热稳定性优良以及减重效果显著等特点,被视为大尺寸轻质反射镜的主要选材,广泛应用在航天、强激光、半导体等领域。

联合光科的碳化硅材料

以上几大类光学材料也可称为光介质材料,光线通过它以后可改变传播方向、相位及强度等。除了这几大类光介质材料,光学纤维材料、光学薄膜材料、液晶材料、发光材料等都属于光学材料,光学技术的发展离不开光学材料技术,我们期待中国的光学材料技术更上一层楼。

液态透镜技术在工业镜头中的应用

什么是液态透镜技术?

传统的光学透镜由光学材料制造,无论使用哪种光学材料(光学玻璃、光学晶体或者光学塑料)制作的透镜都是固体,不能改变大小和曲率。使用这类透镜的光学系统,只能通过在光轴上前后移动某个透镜来改变整个光学系统的对焦点。

与传统透镜有所不同,液态透镜是一种使用一种或多种液体制成的无机械连接的光学元件,可以通过外部控制改变光学元件的光学参数(焦距、曲率半径等),有着传统光学透镜无法比拟的性能。简单来说就是透镜的介质变为液体,更准确地来说就是一种通过改变其表面曲率来动态调整透镜焦距的新型光学元件。这种内部参数变化采用电控方式,能够实现毫秒级的变化与自动化编程。

从仿生学上来说,液态透镜的创意也许来自于人体的眼球,人类的眼睛之所以既能看清远处,又能看清近处就是因为眼球的晶状体在睫状肌的控制下可以改变曲率,从而实现整个眼睛视觉系统工作距离的改变。

液态透镜的两种技术路线

目前商业化量产的液态镜头,主要有两种技术路线来实现。

一种是以V公司为代表的双液电润湿法透镜,另外一种是以O公司为代表的液体填充式透镜。

双液体透镜由两种液体组成,由于两种液体存在折射率差,因此交界面就可以发生折射,如果我们可以用外部控制信号改变分界面的曲率,那么这个液态透镜就实现了光学参数的改变。

这里需要重点介绍一下电润湿原理,电润湿效应最早在1876年由加布里尔·李普曼(Gabriel Lippmann)发现,电润湿效应施加于两种非混合流体,一种导电的溶液和一种不导电的油,且两者具有不同的折射率,以及相同的密度。由于流体不混合,它们形成像透镜一样光滑且弯曲的分界面。我们通过向导电溶液施加电压而改变两种液体表面相互作用的方式,从而改变分界面的曲率半径。


左图:双液电润湿液态透镜           右图:液体填充式液态透镜
而液体填充式透镜结构类似于人眼的晶状体结构。具有高折射率的光学液体被密封在由柔性聚合物制成的弹性薄膜中,利用电磁驱动压紧或松弛分布于侧边的环形膜层区,由于密封液体积不变,压紧时液体从侧边挤压到中心通光孔中,液体的曲率半径变小,焦距变小;反之松弛侧边环形区域膜层时,通光孔中的光学液体扩散开,液体的曲率半径变大,焦距变大。

液态透镜在机器视觉中的应用

在机器视觉应用中,产品质量检测或条形码扫描应用场景下,通常利用高f/#镜头的大景深,但是随着f/#的增加,更大的景深也会带来明显的缺点。因为光圈尺寸被减小了,通过系统的光线更少,降低了分辨率,延长了曝光时间,这对产线的效率提升是不利的。

设计一个含有液态透镜的镜头,可以避免这个缺点。液态透镜的使用,使镜头可以用更紧凑的光学结构完成对焦,且有毫秒级的调整速度,比传统纯机械平移镜片结构调焦的镜头更块,更耐用,且完全不用考虑景深的问题。

在快速移动的装配线,多个前景后景的条形码检测的使用场景下,传统的机械镜头为了适应不同的工作距离或者需要移动和调整,会延迟产线速度降低生产效率,或者需要增加系统成本通过使用多个镜头和相机来弥补。如果装配了液态镜头,可以在镜头位置保持不动,物距发生变化时,利用外接电控瞬时(毫秒级)调整液态透镜的曲率半径完成对焦,如同人眼,远眺和微观可以自由快速切换。


同样,在机器视觉中远心镜头常用在固定物距下检测尺寸,一旦物距变化超过镜头景深,就需要调整远心镜头的工作距离,配备有液态透镜的远心镜头因为具备瞬时调整功能,也就不存在物距超过镜头景深范围这个问题,即可实现单一远心镜头现实多物距的尺寸检测而无需调整镜头位置。

随着工业自动化和机器视觉行业的持续增长,行业对快速、耐用和可靠的视觉系统的需求也相应增加。液态镜头是提高机器视觉速度、效率和集成度的重要组成部分和解决方案之一。

光学玻璃透镜

光学玻璃透镜的加工方法光学玻璃是制造各种透镜、反射镜等光学仪器的重要材料。它具有折射率高、色散低、透光率高,耐热性强等特点。在制作过程中,由于工艺要求严格,对原材料的选择十分重要。本文就如何正确选用光学玻璃做透镜进行探讨。

1. 折射率:折射率是反映一种物质的光学性质的一个重要指标。通常用该物质的折光度(n)与标准黑体在空气中的折光率的比值来衡量其相对折射率。

例如,某材料的折光率为1.4,即1立方厘米的材料可产生1.4×10-4米的入射光线;而另一种材料的折光度则1.7,则表示该种材料每平方厘米能产生1.7×10-4米的入射光线.可见两种材料的相对折射率的差别很大。

2. 色散系数:
色散系数是指单位面积内通过一平行光束所需能量的多少倍来表示光的分散能力的大小。对于同一种材料而言,如果它的色散系数越大说明其分散能力越强;反之亦然。

3. 比重:比重是指一定体积的物体或溶液的重量与同体积水的重量之比值。

4. 耐火度:耐火度指在一定温度条件下抵抗高温的能力。

5. 化学稳定性:化学稳定性是指在一定的温度下和压力下不发生化学反应的能力。

6. 硬度:硬度是指金属材料抵抗变形和破坏的能力。

7. 热导率和热膨胀性 :热导率是指物质传导热的速率大小;热膨胀性指受热时所产生的膨胀程度。

8. 抗拉强度及弹性模量 :抗拉强度是指在拉伸试验中承受的最大拉力;弹性模量是衡量金属材料塑性大小的一个物理量。

9. 尺寸稳定性和耐腐蚀性能。

10. 机械加工性能。

11. 耐磨性和表面质量。

12. 电绝缘性能和电火花敏感度。

13. 化学稳定性。

14. 介电常数。

15. 相容性与毒性。

16. 安全使用。

17. 生产成本。

18. 市场前景。

19. 应用范围。

20. 其他。

透镜的生产加工过程有哪些
透镜型号

透镜是用透明物质制成的表面为球面一部分的光学元件,镜头是由几片透镜组成的,有塑胶透镜(plastic)和玻璃透镜(glass)两种,玻璃透镜比塑胶贵。通常摄像头用的镜头构造有:1P、2P、1G1P、1G2P、2G2P、4G等,透镜越多,成本越高。因此一个品质好的摄像头应该是采用玻璃镜头的,其成像效果要比塑胶镜头好,在天文、军事、交通、医学、艺术等领域发挥着重要作用。

详细说明

概念

透镜可广泛应用于安防、车载、数码相机、激光、光学仪器等各个领域,随着市场不断的发展,透镜技术也越来越应用广泛。

(lens)透镜是根据光的折射规律制成的。透镜是由透明物质(如玻璃、水晶等)制成的一种光学元件。透镜是折射镜,其折射面是两个球面(球面一部分),或一个球面(球面一部分)一个平面的透明体。它所成的像有实像也有虚像。

凸透镜:中间厚,边缘薄,有双凸、平凸、凹凸三种;

凹透镜:中间薄,边缘厚,有双凹、平凹、凸凹三种。

介绍

薄透镜–为一种中央部分的厚度和其两面的曲率半径相比为很大的透镜。初期,照相机只装有一个凸透镜的镜头,故称为“单透镜”。随着科技日益发展,现代镜头均有若干不同形式和功能的凸凹透镜组成一个会聚的透镜,称为“复式透镜”。复式透镜中之凹透镜起校正各种象差的作用。

光学玻璃具有透明度高、纯洁、无色、质地均匀,且有良好的折光能力,故为镜头生产的主要原料。由于化学成分和折射率不同光学玻璃有:

1.火石玻璃–在玻璃成分中加入氧化铅,以增加折射率(1.8804)

2.冕牌玻璃–在玻璃成分中加入氧化钠和氧化钙制成,以减低其折射率(钡冕玻璃的折射率为1.7055)

3.镧冕玻璃–为所发现的品种,它具有折射率高,色散率低的优良特性,为创造大口径的高级镜头提供了条件。

原理

用于灯具上之一种玻璃或塑料性组件可以变化光线之方向或是控制配光分布情形。

透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。

当一束平行于主光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过焦点并垂直光轴的平面,称“焦平面”。焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。

光线通过凹透镜后,成正立虚像,凸透镜则成倒立实像。实像可在屏幕上显现出来,而虚像不能。

凸透镜成像规律:

物距(u)像距(v)倒、正大、小虚、实应用
u>2ff<v<2f倒立缩小实像照相机
u=2fv=2f倒立等大实像粗侧焦距
f<u<2fv>2f倒立放大实像投影仪;幻灯机
u=fv=∞不成像//获取平行光
u<fv>u正立放大虚像放大镜

分类

凸透镜

凸透镜是中央较厚,边缘较薄的透镜。 凸透镜具有会聚光线的作用,所以也叫“会聚透镜”、“正透镜”(可用于远视与老花镜)。此类透镜可分为:

a.双凸透镜——是两面凸的透镜;

b.平凸透镜——是一面凸、一面平的透镜;

c.凹凸透镜——为一面凸,一面凹的透镜。

凸透镜成像规律是指物体放在焦点之外,在凸透镜另一侧成倒立的实像,实像有缩小、等大、放大三种。物距越小,像距越大,实像越大。物体放在焦点之内,在凸透镜同一侧成正立放大的虚像。物距越小,像距越小,虚像越小 在光学中,由实际光线汇聚成的像,称为实像,能用光屏呈接;反之,则称为虚像,只能由眼睛感觉。有经验的物理老师,在讲述实像和虚像的区别时,往往会提到这样一种区分方法:“实像都是倒立的,而虚像都是正立的。”所谓“正立”和“倒立”,当然是相对于原物体而言。

将平行光线(如阳光)平行于主光轴(凸透镜两个球面的球心的连线称为此透镜的主光轴)射入凸透镜,光在透镜的两面经过两次折射后,集中在轴上的一点,此点叫做凸透镜的焦点(记号为:F;英文为:focus),凸透镜在镜的两侧各有一实焦点,如为薄透镜时,此两焦点至透镜中心的距离大致相等。凸透镜之焦距是指焦点到透镜中心的距离,通常以f表示。凸透镜球面半径越小,焦距(记号为:f,英文为:focal length)越短。凸透镜可用于放大镜、老花眼及远视的人戴的眼镜、摄影机、电影放映机、显微镜、望远镜的主轴:通过凸透镜两个球面球心C1、C2的直线叫凸透镜的主光轴。光心:凸透镜的中心O点是透镜的光心。焦点:平行于主轴的光线经过凸透镜后会聚于主光轴上一点F,这一点是凸透镜的焦点。焦距:焦点F到凸透镜光心O的距离叫焦距,用f表示。物距:物体到凸透镜光心的距离称物距,用u表示。像距:物体经凸透镜所成的像到凸透镜光心的距离称像距,用v表示。

公式:1/u(物距)+1/v(像距)=1/f(透镜焦距)

(关于符号的正负:物距u恒取正值。像距v的正负由像的实虚来确定,实像时v为正,虚像时v为负。凸透镜的f为正值,凹透镜的f为负值。)

凹透镜

凹透镜亦称为负球透镜,镜片的中央薄,周边厚,呈凹形,所以又叫凹透镜。凹透镜对光有发散作用。平行光线通过凹球面透镜发生偏折后,光线发散,成为发散光线,不可能形成实性焦点,沿着散开光线的反向延长线,在投射光线的同一侧交于F点,形成的是一虚焦点。

凹透镜成像的几何作图与凸透镜者原则相同。从物体的顶端亦作为两条直线:一条平行于主光轴,经过凹透镜后偏折为发散光线,将此折射光线相反方向返回至主焦点;另一条通过透镜的光学中心点,这两条直线相交于一点,此为物体的像。

凹透镜所成的像总是小于物体的、直立的虚像,凹透镜主要用于矫正近视眼。

凹透镜具有发散光线的作用,所以也叫“发散透镜”、“负透镜”(可用于近视眼镜)。此类透镜又可分为:

a.双凹透镜——是两面凹的透镜

b.平凹透镜——是一面凹、一面平的透镜

c.凸凹透镜——为一面凸、一面凹的透镜

其两面曲率中心之连线称为主轴,其中央之点O称为光心。通过光心的光线,无论来自何方均不折射。平行主轴之光束,照于凹透镜上折射后向四方发散,逆其发散方向的延长线,则均会于与光源同侧之一点F,其折射光线恰如从F点发出,此点称为虚焦点。在透镜两侧各有一个。凹透镜又称为发散透镜。凹透镜的焦距,是指由焦点到透镜中心的距离。透镜的球面曲率半径越大其焦距越长,如为薄透镜,则其两侧之焦距相等。

凹透镜所成的像总是小于物体的。

车用透镜

透镜的光形是最标准的,可以有很明显的明暗切割线,通过聚光的作用解决了散光的问题,在国外,氙气灯是标配透镜使用的,这种镜属于光学镜一类,我们就叫它”透镜”。采用,光线散失小等优点。具专业从事氙气大灯改装师傅建议装了HID大灯而没有装透镜的司机朋友,为了您自身的安全,也为了他人的安全,加装透镜是最好的选择。

透镜功用

1;因为透镜有较强的聚光能力,所以用它来照路,不仅路面明亮,而且清晰。

2;由于光线分散很小,所以它的光线射程要比普通卤素灯要远和清晰。故而能使您在第一时间看到远处的事物,避免开过路口或错过目标。

3;透镜式灯头的大灯相比采用传统灯头的大灯具有,亮度均匀,穿透力强,所以他不管在雨天还是在大雾天气都有较强的穿透力。从而能让迎面驶来的车辆第一时间收到灯光信息,避免事故的发生。

4;透镜里面的HID灯泡寿命是普通灯泡的8到10倍,从而减去让您老是要换灯所带来的不必要麻烦。

5;透镜氙气灯不需要加装任何供电系统,因为真正的HID气体放电灯,要有一颗电压安定器,12V电压,接着再将电压转成正常电压,稳定持续供应氙气灯泡发光。从而能起到节电的功能。

6;和第5条说的一样,由于透镜灯泡是由安定器升压到23000V,用在刚开启电源时的瞬间刺激氙气达到高亮度的,所以他在断电的情况下还能维持3到4秒的亮度。这样能使您在紧急情况下提前做好停车准备,避免灾难的发生。这点传统卤素灯是做不到的。

7;在遇到那些大型货车或开车的灯光通知他,如果还是没有用的话,那您就用远光通知他。

区别

结构不同

凸透镜是由两面磨成球面的透明镜体组成,两边薄,中间厚

凹透镜是由两面都是磨成凹球面透明镜体组成,两边厚,中间薄

对光线的作用不同

凸透镜对光线起会聚作用

凹透镜对光线起发散作用

成像性质不同

凸透镜是折射成像

凹透镜是 “光线通过凹透镜后,成正立虚像,而凸透镜则成倒立实像。实像可在屏幕上显现,而虚像不能。”

规律

一.透镜用透镜符号来表示(一条线段两头有两个V形标志)

画出主光轴,标出光心、焦点来根据透镜的三条特殊光线中的两条折射光线(一般作过光心的光线和平行于主光轴的光线较好)的相交点,即可得到透镜所成的像的特点(如虚实、大小、正倒等)。

二.透镜成像时,物体上每一点发出的照到透镜上的所有光线都成像在同一个位置,挡住一部分,并不影响射向透镜的其它光线的成像,所以仍然可以看到完整的像,但是由于射到像上的光线减少,所以屏上像的亮度会变暗。

三.凸透镜成像规律:

1.凸透镜成实像需要满足的一个条件是(u>f)。

2.共轭成像指的是物距和像距的大小可以互换,两种情况下分别成放大、缩小的倒立实像

3.透过凸透镜看二倍焦距之外的钟表,秒针的像仍然是顺时针方向转动,因为此时成倒立的实像,倒着看仍是正常的方向,所以仍然是顺时针方向转动。

实虚像

相同点:它们都是光线所在的直线的相交而成的

不同点:实像是实际光线相交成的,而虚像是光线的反向延长线相交而成的:

实像都是倒立的,而虚像都是正立的;实像可以呈在光屏上,也可以用眼睛观察到,而虚像不能呈在光屏上,只能用眼睛观察到

6.粗测凸透镜焦距的方法有:会聚太阳光(或平行光线)的方法、远物成像法、成倒立等大实像的方法、共轭成像法

7. (1)照相时照远景时,相机远离被拍摄物,镜头后缩;照近景时,相机要靠近被拍摄物,镜头前伸。(理由是:凸透镜成实像时:物近像远像变大、物远像近像变小)

2.放大投影仪投出的像时,镜头要向下调节,同时要增大投影仪到屏幕的距离;缩小投影仪投出的像时,镜头要向上调节,同时要减小投影仪到屏幕的距离。(理由同上题)

3. 使平行于珠光线的光汇聚在一点放大通过放大镜看到的像时,应将放大镜到被观察物的距离适当增大(不能比透镜的焦距大);缩小通过放大镜看到的像时,应将放大镜到被观察物的距离减小 (理由:凸透镜成虚像时:物近像近像变小、物远像远像变大)。

8.透镜上通过两个球心的直线叫主光轴

9.平行于主光轴的光会聚在一点,这个点叫焦点

10.焦点到光心的距离叫做焦距

11.在主光轴上有一个特殊点:凡是通过该点的光线传播方向不变,此点是透镜的光心

镜头透镜

镜头是由几片透镜组成,透镜有塑胶透镜(plastic)和玻璃透镜(glass)两种,玻璃透镜比塑胶贵。通常摄像头用的镜头构造有:1P、2P、1G1P、1G2P、2G2P、4G等,透镜越多,成本越高。因此一个品质好的摄像头应该是采用玻璃镜头的,其成像效果要比塑胶镜头好。镜头对成像质量也有极大影响,好的镜头使图像更加清晰、细腻。一般投影仪的镜头都是变焦镜头,针对市场的不同,变焦倍数从4倍到16倍或更高。

应用

透镜

说透镜,能透光;中间厚,凸透镜;中间薄,凹透镜。

会聚作用凸透镜,发散作用凹透镜。

平光会聚到一点,焦点F来表示。

焦点到达镜光心,距离叫作镜焦距(用f表示)。

生活中的透镜

物远像近照相机,缩小实像且倒立。

物近像远投影仪,放大实像且倒立。

物像同侧放大镜,正立放大一虚像。

实像倒立虚像正,实像异侧虚像同。

凸透镜成像规律及应用

物在两倍焦距外,一、二倍(焦)距间成像。

实像倒立且缩小,此例用在照相机。

物移近,像移远,同时像还要变大。

物在一、二倍距间,二倍焦距外成像。

实像倒立且放大,此例用在投影仪。

物体位于焦点内,移动光屏不见像。

透过透镜看物体,正立放大一虚像。

物体与像处同侧,此例用在放大镜。

物近像远像变大,物远像近像变小。

二倍焦距分大小,一倍焦距分虚实。

讲解:

物体在凸透镜一倍焦距外时,凸透镜成实像。在一倍焦距内”u

成虚像,物休在凸透镜二倍焦距外(u>2f)时,凸透镜成缩小的实像。

2f>u>f时,成放大的实像。没有缩小的虚像、实像都是倒立的,没有倒立的虚像。

眼睛和眼镜

近视眼晶状体厚,看清近处看不清远。

远光成像视网膜前,戴凹透镜恢复正常。

远视眼晶状体薄,看清远处看不清近。

近光成像视网膜后,戴凸透镜调清光。

眼睛近点10cm,明视距离25cm.

如何分辨滤光片的镀膜面

如何分辨滤光片的镀膜面
滤光片是一类有针对性选择光谱波长透过、反射、截止、衰减的光学元件,按照其功能作用可分为带通滤光片、长波通滤光片、短波通滤光片、二向色滤光片、中性密度片(ND Filter)、陷波滤光片、冷反射镜、热反射镜、颜色滤光片等;滤光片目前使用已经广泛,通常用于光谱分析、生物医学、机器视觉、荧光显微、工业自动化等行业及产品领域。

如上图所示,这是一个单层只有一面镀膜的滤光片。我们假设它的俯视面(绿色图)是镀膜面,现在以上图所示的视角来观察图示中的红色线, 如果看不到红色线,那么俯视面为镀膜面。如果看到红色线,可以确定俯视面不是镀膜面。那么我们将底面掉转至俯视面再次重复以上观察方法以确定镀膜面。

镀膜面的区分有助于我们在使用滤光片时能更好放置滤光片。不同的放置方向会在特定环境会产生不同的使用效果。
在一些特定的镜片,比如反射镜,在镀膜面朝外为外反射,镀膜面朝内时为内反射,这个时候镀膜面的区分就显得非常重要。

膜面区分示例图1

膜面区分示例图2

膜面区分示例图3

膜面区分示例图4