Trusted by more than
3 Million
customers.
Complete Home
Renovation
Services
5 Year Warranty on Workmanship
Every Project is Run by a Team of Experts
We Save You Time, Money, and Space
Trusted by more than
3 Million
customers.
Clean Home
Decoration
Services
5 Year Warranty on Workmanship
Every Project is Run by a Team of Experts
We Save You Time, Money, and Space
Trusted by more than
3 Million
customers.
Complete Kitchen
Renovation
Services
5 Year Warranty on Workmanship
Every Project is Run by a Team of Experts
We Save You Time, Money, and Space
From Our Blog
Recent News
非球面透镜在激光准直方向的应用
什么是非球面透镜光学系统中最常用的球面透镜是指透镜表面是回转对称的球面表面,即从透镜的中心到边缘具有恒定的曲率。而非球面透镜则是透镜表面为回转对称的不是球面的表面,即符合特定表达式的回转对称的且表面是光滑连续的表面。 光学系统中采用的非球面有三大类:第一类是轴对称非球面,如回转圆锥曲面、回转高次曲面;第二类是具有两个对称面的非球面,如柱面、复曲面;第三类是没有对称性的自由曲面。 图1 (左)非球面透镜示意图 (右)非球面透镜 最常用的非球面表达式是一个圆锥曲面作为基准面再迭加一系列的高次多项式构成,表达式为: 如图1所示,式中r为离非球面轴的径向距离,z为相应的垂直距离,c=1/R为顶点曲率,R为顶点曲率半径,k表示圆锥系数,为第n次非球面系数;如图2所示,不同值代表不同的圆锥曲线形式。 图2 不同的二次曲面系数对应的曲面类型 非球面透镜的优点 球面透镜无论是否存在任何的测量误差和制造误差,都会出现球差。而非球面透镜最显著的优点便是它能够通过对圆锥常数和非球面系数进行调整、优化,以最大限度地减小像差,如图3所示,展示了一个带有显著球差的球面透镜,和一个几乎没有任何球差的非球面透镜,相比而言,单片非球面透镜获得了更好的像质。 图3 (上)球面透镜球差示意图 (下)非球面透镜消球差 相比于常规的通过增加镜片数量来校正球差的方法,非球面透镜能够实现用更少的透镜数来实现更好的像差校正,例如,一般使用十个或更多透镜的变焦镜头,可以使用一两个非球面透镜来替换五六个球面透镜,实现相同或更高的光学效果,从而降低系统的长短和复杂性。 另外,使用更多的光学元件的光学系统,往往对机械公差有严格要求,且会增加额外的校准步骤,以及更多的增透膜要求,从而降低系统的整体实用性。因此,光学系统中非球面透镜的使用(虽然非球面透镜价格相比F数等同的单片透镜和双胶合透镜贵),将会降低整体系统的成本。 总的来说,光学系统中合理采用非球面透镜,在实现光学系统小型化、轻型化、多功能化等方面具有不可替代的地位。 非球面透镜在激光准直方面的应用 非球面透镜在光学系统中扮演着非常重要的角色。例如,我们接触到的最多的手机镜头、相机镜头、超短焦投影仪等,这类复杂系统中多是通过使用多片非球面和球面镜组合来对系统像差进行优化设计,没有形成标准化产品。 图4 非球面透镜在手机镜头和数码相机中的应用 非球面镜的另一类重要应用是在激光准直、聚焦、激光器与光纤耦合方面。从激光器中直接出来的光束通常为高斯光束,而实际应用中,如光学测量、激光医疗、激光加工等领域,需要对激光光束进行准直、聚焦、均匀化等整形。常规的通过球面透镜准直的方法,通常需要至少2片透镜。 由于激光是单波长的光源,球差往往是阻碍单个球面透镜聚焦或准直光时获得衍射极限性能的因素,而单片的非球面透镜对于球差的优化完美地解决这个问题,因此,常用于对光纤或激光二极管的输出光进行准直、将激光耦合到光纤中等。 图5 (上)非球面透镜激光准直示意 (下)将激光耦合到光纤中的应用 非球面透镜在用于激光准直时,平坦的表面即曲率半径较大的一面(有时为平面)应该朝向激光光源,如图6所示,假设光源发散角为θ,准直后所需光束直径为Φ,则可以计算出适于本系统的非球面透镜的焦距为: 其次,还应满足光源的数值孔径(NA)需小于非球面透镜的数值孔径(NA)。 例如,波长为650nm激光二极管,发射角度为30°,准直后光束直径为3mm,则所需非球面透镜焦距 ,其次,激光二极管,根据以上数据,可从联合光科非球面透镜产品中挑选出编号为140175的产品满足准直要求。 图6 激光准直非球面透镜的参数确定 非球面透镜产品 在工业加工、光学测量、实验室研究等领域,常用的激光光源和光纤光源的波长、发散角、准直光束直径等参数是较为明确的,因此,联合光科也针对这些应用设计和生产了一系列性能优异的精密抛光的大直径非球面透镜和精密模压玻璃非球面透镜,在激光准直、聚焦、激光器与光纤耦合等领域有广泛应用。 表1 联合光科非球面透镜产品
光学分辨率有极限吗?
CC:小鹤,你说按照几何光学的定律,是不是我们通过适当的选择透镜的焦距就可以造出很大很大放大倍数的显微镜系统,将任何细小的物体放大到可以清晰观测的程度?薛定谔的鹤:你想得美,大家都知道光学分辨率越高,系统的精度越高,科学实验获得的信息更精确。但恩斯特·阿贝博士早在19世纪70年代就给光学显微镜的分辨率安排了一个天花板。今天正好一起来学习解读一下这个分辨率极限公式吧。解读阿贝公式前,我们先了解几个概念: 分辨率 可以将密集的点区分为单个的点的能力。 分辨率极限(最大分辨率) 可识别为不同点的最小间距。光学分辨率极限的判定,最早是由物理学家恩斯特阿贝博士在1873年发现,可判定任何光学成像的分辨率理论极限。艾里斑 凸透镜能将入射光聚焦到它的焦点上,但由于透镜口径有一定大小,光线透过时会由于波动特性会发生衍射,无法将光线聚成无限小的焦点上,而只会形成一定能量分布的光斑。中央是明亮的圆斑,周围有一组较弱的明暗相间的同心环状条纹,把其中以第一暗环为界限的中央亮斑称为艾里斑(Airy Disk)。图1为两个等光强的艾里斑从重叠到逐步分开的影像。 图1 图2为最简单的双凸透镜显微系统示意图,我们可以看到:把物体靠近眼睛,可以增大孔径角(Angular Aperture)就可以增大在眼睛视网膜上的成像,也就是提高了分辨率。 图2 从光的波动属性分析,物体细节对光的波动的反射才是物体被观察到的根本原因。通过发射波长等于或者小于物体大小的波,它被反射回观察者。而被观测物可以被观测到的最小尺度就是1/2波长,小于这个尺度被观测物将无法反射光波,从而无法被观测。 图3最终,阿贝博士得出的阿贝简单判定(Abbe Simple Criterion)为: 式中λ为使用光线的波长值,n为光路中透镜对介质的折射率系数,α为入射光束与透镜光轴间的夹角。 但是在实际应用中,被测物体不是一个点而是一系列物点的集合。每一个物点经过有限直径的透镜后,在像平面上都会产生文中开头提到的艾里斑,如果两个物点的艾里斑重叠到无法分辨,我们则认为这两个物点无法被分辨,图4中让两个等光强的非相干点像逐步分开,当两个点像中心间隔等于艾里斑的半径R,这样的艾里斑可以被认为是物点可以被分辨的最小尺寸,这种不同于阿贝简单判定的方式叫做瑞利判定(Rayleigh Criterion)。 图4 那么我们来计算一下按照瑞利判定,可被分辨的艾里斑的半径(也就是可以被分辨的最小尺寸)与生成这个艾里斑的光波波长的关系。图5为原理示意图。 图5 中间演算过程涉及到冗长的傅里叶级数变换以及各种函数方程,最终计算结果为: 式中λ为使用光线的波长值,n为光路中透镜对介质的折射率系数,α为入射光束与透镜光轴间的夹角。 普通光学显微镜,为提高分辨率极限(使d 值降低),就需要从两个方面着手: 一、减小λ值 可见光的波长范围:390nm~760nm,取可见光的波长为较短数值λ=400nm时(相当于紫色光),d≈200nm=0.2μm,这基本上可认为是一般光学显微镜的最高分辨能力了。 图6在可见光波段想要获得更好的分辨率极限,显微镜系统在设计时就要尽量选用蓝紫光线作为照明光源。 二、增大n•sinα的值,这个值也被标为NA值(数值孔径) 选用折射率的更大的介质,以及增大孔径角有助于提高显微镜的分辨率。显微物镜上都会标识NA值(如图6中标识NA值为0.055),同等放大倍率的物镜,更大的数值孔径可以获得更好的分辨率。 图7恩斯特·阿贝博士是耶拿最有名的物理学家、光学家,在人类历史上留下的宝贵财富远不止阿贝公式。还有阿贝正弦条件,阿贝数,阿贝最早在蔡司推行了8小时工作制,成为现代雇员保障制度的先导者。为了纪念阿贝博士的伟大贡献,位于月球背面的一座大约形成于30多亿年前的撞击坑被命名为阿贝环形山。在耶拿,卡尔蔡司,恩斯特阿贝,以及奥托肖特三人被称为耶拿三杰,也代表着德国光学之城耶拿的辉煌成就。
光机系统中的螺纹参数
在光机产品选型过程中,我们经常看到涉及到各种螺纹,接口,连接固定方式的描述,这些描述具有哪些含义,本文将以图文实物的形式一一展开,让读者对光机械中的接口螺纹基本常识有一个全面的了解。 一、螺纹基础知识 螺纹最核心的三个要素是牙型,直径和螺距。 1,牙型在通过螺纹轴线的剖面区域上,螺纹的轮廓形状称为牙型。有三角形、梯形、锯齿形、圆弧和矩形等牙型。 图1,螺纹牙型 在光机系统中,一般使用普通三角形螺纹,三角形螺纹又分为粗牙和细牙两种。 2,公称直径 螺纹有大径(d、D)、中径(d2、D2)、小径(d1、D1),在表示螺纹时采用的是公称直径,公称直径是代表螺纹尺寸的直径,普通螺纹的公称直径就是大径。 3,螺距 螺距(p)是指相邻两牙在中径线上对应两点间的轴向距离。 二、在光机系统中螺纹的常用标注方法 螺纹代号 大径 x 螺距(粗牙不注) 旋向 (右旋不注) 以下是举例说明 M8 普通粗牙三角螺纹,大直径8mm,螺距1.25mm(粗牙螺距默认不标注)右旋(默认不标注) M6x 0.75 普通细牙三角螺纹,大直径6mm,螺距0.75mm 右旋(默认不标注) 在国标螺纹代码表准中,除了标注以上三要素外,还会有旋向,公差代号,旋合长度的标识。 在光桥系统中,或者光学元件安装调整架产品中,我们也能看到螺纹接口描述中还会有“阴”“阳”“内”“外”的标注。这个标注是指螺纹处于本体的外表面还是内表面,外表面的螺纹称为“外”或者“阳”, 内表面的螺纹称为“内”或者“阴”。 图3,螺纹的阴阳内外标注 除了公制标准螺纹,日常在光机系统里还能见到SM螺纹,RMS螺纹以及C螺纹。 这几种螺纹是以英寸为基准进行标注的螺纹规格,大径和螺距都是以英寸为基准进行细分。 螺纹代号(大径英寸 — 每英寸牙数) RMS螺纹结构在光机系统中一般用于连接显微物镜。 C螺纹结构在光机系统中一般用于连接镜头或者工业相机。 三、各种螺纹实物及应用场景展示 1,柱头螺丝,紧定螺丝和转接螺丝实物 图4,不同螺纹规格的柱头螺丝,M4,M6 图5,不同螺纹规格的紧定螺丝,平头,锥头,M3,M4,M6 平头紧定螺丝一般用来连接两个光机部件,锥头紧定螺丝一般在笼式系统中将笼片定位固定在笼杆不同位置。 图6,转接螺丝及应用 转接螺丝的作用: 内螺纹转外螺纹和外螺纹转外螺纹两种类型,为M3、M4和M6螺丝相互之间灵活转接提供便利,无需再购买不同接口规格的光机部件。 图7,M6螺纹柱头螺丝图8,M4螺纹锥头紧定螺丝 2,光桥系统和笼式系统中的SM螺纹,显微物镜的RMS螺纹,镜头及相机的C螺纹实物 在光桥系统或者笼式系统中一般会出现SM系列的螺纹参数。 下图是SM1螺纹的的笼式系统结构和光桥系统结构实物图,适配压圈也是SM1螺纹,用于安装1英寸的光学元件。 图9,光桥系统和笼式系统中的SM1螺纹 RMS螺纹一般用于显微物镜的连接,RMS螺纹的大径为0.8英寸 即20.32mm, 每英寸36牙,螺距为0.705mm。 图10,显微物镜上的RMS螺纹 C螺纹卡口一般应用在成像领域,镜头,相机以及相应延长环大多采用此螺纹卡口。 C螺纹的大径为1英寸,即25.4mm,每英寸32牙,螺距为0.794mm。 图11,工业镜头的C口螺纹 本文上述螺纹种类以及对应的螺纹应用场景基本涵盖了我们日常接触的光机系统中的螺纹规格。读懂并且了解这些螺纹规格以及应用场景有助于我们快速选购和匹配光机械件,避免不必要的选型错误。更多光机元件选购请浏览光机元件
不可不读的光学镜头基本参数和术语解释
成像镜头是光学产品的重要的组成部分,它的作用是将目标物体成像在图像传感器上。本文将继续对成像镜头的参数和术语进行说明解释,帮助我们更好的理解镜头的性能特点,针对不同的应用场景完成镜头的选型搭配。 定义:焦距是指镜头的光学中心(光学后主点)到成像面焦点的距离,焦距是光学系统中衡量光的聚集或发散的度量方式。 平行光通过镜头汇聚于一点,这个点就是所说的焦点,是镜头的重要性能指标。一般常用的工业镜头的焦距为8mm、12mm、16mm、25mm、35mm、50mm等。焦距的大小决定着视场角的大小,焦距数值小,观察的范围大;焦距数值大,视场角小,观察范围小。 如何选择合适的焦距的定焦镜头?请看镜头工作距,离焦距,传感器和视野尺寸的计算关系。 图1:镜头焦距与工作距离选择 后焦距:镜头最后一个镜片表面顶点到焦点的距离。因对焦时镜头后镜片可能移动,一般标注无穷远对焦时的后焦距,也就是最小后焦距,有限距离成像时后焦距会增大。 2.光圈与景深: 光圈定义:光圈F值又称为光圈数,是镜头焦距与有效孔径(即光圈)之比。 F值衡量光学系统通光量的大小。F值越小进入系统的光线就越多,图像亮度越高。 图2:光圈与景深 一般镜头会标注最小光圈数,即最大通光孔径。如F1.4,F1.8,F2.0等。光圈的调节会有两个主要影响:成像亮度与景深。光圈越大,进入系统的光线越多,图像亮度越高;光圈越小,进入系统的光线越少,图像越暗。光圈越大,景深越小,虚化明显;光圈越小,景深越大。 图3:大光圈通光量大,景深小虚化明显 景深定义:镜头对某一物平面对焦后,在对焦平面的前后都有一段能清晰成像的范围,分别称为前景深和后景深。景深=前景深+后景深; 图4:景深与焦深 成像光束未会聚于一点,在像平面上形成一个扩散的圆形投影,称为弥散圆。景深ΔL=ΔL1+ΔL2 δ:弥散圆直径; f :焦距; F:光圈F值; L:工作距离; 减小光圈(增大F值)、增加工作距离、选择小焦距镜头均可使景深增加。 3.视场角: 定义:以光学镜头为顶点,以被测物体通过镜头的较大成像范围的两边缘构成的夹角叫做视场角。视场角的大小决定了镜头的视野范围,视场角越大,视野就越大,光学倍率也就越小。视场角与传感器尺寸有关,镜头的视场角应标明标准传感器尺寸。以联合光科16mm 2/3″ 5M 定焦镜头 为例: 传感器尺寸 视场角(对角×水平×垂直) 对象大小(在最近对焦距离处) 2/3″ 38.0°×30.8°×23.4° 145.6×116.5×87.3mm 1/2″ 28.1°×22.7°×17.1° 105.9×84.6×63.5mm 1/3″ 21.3°×17.1°×12.9° 79.4×63.5×47.6mm 表1:16mm镜头传感器与视场大小 使用某一款相机,在相同工作距离下拍摄,不同焦距的镜头也会有不同的视场角。 图5:同款相机,相同工作距离,不同焦距的拍摄效果(注:图中所标为水平视场角) 视场角与焦距有关,在使用相同感光元件的情况下,搭配的镜头焦距越长,视场角越小。 图6:镜头焦距与视场角 4.畸变 定义:镜头对被摄物体所成的像相对于物体本身的失真程度称为畸变。理想的镜头成像,物平面与像平面上的放大倍率是固定的,但实际这一性质只有在图像中心区域的小视场才具备。图像的放大倍率会随着视场增大而变化,使成像产生失真。畸变通常分为两种:枕形畸变:镜头成像画面呈向中间收缩的失真现象。桶形畸变:镜头成像画面呈桶形膨胀状的失真现象。畸变会使图像变形,但不影响成像分辨率,可以使用软件校正。畸变率越低表示镜头的光学素质越好。 图7:枕形畸变与桶形畸变 5.最大传感器尺寸 如下图所示,镜头在像平面的成像是圆形,但接收图像的传感器通常为矩形,所以最终保存的图像是矩形。 图8,圆形相面与矩形传感器 以下图为例,镜头成像尺寸会按照通用传感器的尺寸设计,使得圆形像面外沿与矩形传感器四角正好相接,这个传感器尺寸就是该镜头的最大传感器尺寸(下图绿色2/3″传感器)。如果使用更大尺寸的传感器(下图紫色1″传感器)四个角会在镜头圆形像之外。使用更小尺寸的传感器(下图粉色1/1.8″传感器),传感器只采集到圆形像较小区域,视场和视场角会变小。 图9,11mm直径像面与不同尺寸传感器的匹配效果 市面上通用传感器的名称表述,既不是传感器的任何一条边长也不是对角线长度,这样的尺寸标注难以形成具体尺寸的概念。下表是市场上常见的通用传感器尺寸规格信息,传感器对角线长度匹配镜头的像面尺寸的那款传感器就是镜头的最大传感器尺寸。 传感器尺寸 对角线长度/mm 水平长度/mm 竖直长度/mm…
一文读懂光学元件面型检测报告
现代光学工程向一大一小两个方向发展,“大”是指大口径拼接技术,离轴非球面技术,往往应用于大型望远镜、空间望远镜、惯性制约聚变(ICF)装置。“小”是指亚纳米级高精度面型,低中高频粗糙度,多应用于DUV、EUV光刻设备。 高端光学系统的研制需要高精度检测技术,高精度的检测技术支撑着光学系统的确定性制造和集成,以及光学系统仿真技术。目前行业公认的准则就是没有检测就没有控制,更没有确定性加工。 我们日常接触的光学元件性能参数中的面型规格有λ/4或者λ/10,这个参数是如何测定并且指代哪些具体的物理指标,今天通过本文中的一份面型检测报告来解读。 目前行业内的面型检测干涉仪产品,主要是Nikon,Zeiss,和Zygo三个品牌。干涉仪的工作原理都是利用准直光线照射标准参考面(平面,球面,非球面)和被测面(平面,球面,非球面)利用两束反射光的干涉成像进行检测,具体细节不再赘述。本文以Zygo的激光干涉仪为例说明面型检测报告中的核心干货。 启动干涉仪的 MetroPro软件,设置好测试程序(如显示剖面线,3D模型,PSD,泽尼克系数等)后就可以启动检测,检测报告页面包含的信息有以下几个方面。 1. PV数据PV值代表被检测表面上的最高点和最低点之间的高度差。RMS为检测区域内N个数据点的平方和除以N以后的开方值,称为均方根。此元件被测面的PV值为62.32nm,rms值为8.295nm。 2. 3D模型MetroPro软件可以利用被测面的采样数据点转坐标,生成3D模型,直观的表现出面型的凹凸特性。红色为高点,蓝色为低点。 3. PVr数据由于干涉仪中使用的探测器的空间分辨率不同,噪声、鬼像条纹和亮点都会对它产生影响,仅用相机上的两个点(峰谷)来表达测量结果可能不是很精确。PVr是一个新提出的稳健振幅参数,它的计算方法是36阶Zernike拟合的PV值+ 3倍残差的均方根值。此元件按照PVr参数计算的数值为45.98+3*2.97=54.9nm。 4. XY轴剖面曲线图在第一部分的PV数据图中,被检测面的X和Y坐标轴的剖面数值曲线显示在此图中,绿色线表示X轴,蓝色线表示Y轴。 5. 干涉条纹图这个干涉条纹就是被测面和基准面的干涉条纹图像,理想的干涉条纹应该是等间距且平行,条纹的偏转情况代表着被测面与基准面的凹凸关系。 除了小型标准光学元件(直径<100mm)的入库质检,在大型光学元件的制造过程中,干涉仪还起到过程监控的作用,由于大型光学元件材料比较昂贵,每道加工工序都要求严格控制。大型光学元件加工过程为粗磨、精磨和抛光这三道工序,粗磨和精磨工序需用三坐标进行外形尺寸测量,抛光工序主要用干涉仪监测工作面面型。 联合光科销售的现货标准光学元件在入库前,都会使用干涉仪检查元件工作面是否符合面型规格要求,普通光学元件工作面面型精度不低于λ/4,高精度产品的工作面面型精度不低于λ/10,我们确保我们的现货标准光学产品符合标称面型指标。
偏振的原理及偏振元件的应用
光是一种电磁波,电场的振动方向与传播方向垂直。普通光线的电场振动方向是随机的,太阳光,卤素灯光等都是如此。那么如果在光传播方向的垂直截面上,电场随时间的变化是明确的,则这样的光线称为偏振光。在光学设计中,工程人员往往更多关注光的波长和强度,而忽略了其偏振指标,其实偏振是光的重要特性,利用光的偏振性可以实现多种应用。本文将介绍偏振的原理和类型,以及几种典型的工程应用。 上文提到,光是一种电磁波,电磁波是典型的横波,电场(E)和磁场(B)的方向与光的传播方向(Z)垂直,根据电场的方向不同,我们将偏振光分为三种类型。 图1 光的电磁波属性01 线偏振光 光的电场方向沿传播方向限制在一个平面上(y-z平面),其大小随相位变化,在垂直于传播方向的截面上(x-y面),光矢量端点的轨迹是一条直线。 图2 线偏振光示意图02 圆偏振光 光的电场由两个相互垂直,振幅相等但相位差为90°的线性分量组成。圆偏振光在传播过程中,其矢量的大小不变,方向规则变化,在垂直于传播方向的截面上(x-y面),光矢量端点的轨迹是一个圆,根据旋转方向,分为左手或右手圆偏振光。 图3 圆偏振示意图03 椭圆偏振光光的电场由两个不同振幅和/或不是90°相位差的线性分量组成。椭圆偏振光的光矢量的大小和方向在传播过程中均按规则变化,在垂直于传播方向的截面上(x-y面),光矢量端点轨迹是椭圆。这是偏振光的最一般描述,并且圆形和线性偏振光可以被视为椭圆偏振光的两种极端情况。 图4 椭圆偏振示意图 了解了三种不同的偏振光类型,我们可以思考如何人为调整光的偏振态,能够改变光的偏振状态的器件都被称为偏振器,目前常用的偏振器大致可以分为吸收/反射型偏振器(如线栅偏振器,二向色偏振器)和分光型偏振器(如双折射偏振器。)01 线栅偏振器 线栅偏振器是常见的反射型偏振器,它由相互平行的规则细金属线阵列组成,然后将其放置在与非偏振入射光束呈90度角的平面内。沿着这些线阵格栅振动的光被反射,而垂直于这些线阵格栅振动的光被传输。 图5 线栅偏振片原理图 其他反射型偏振器利用特定角度(布儒斯特角)入射时,反射光的偏振态完全是与入射面垂直的S偏振,折射光的偏振态几乎都是与入射面平行的P偏振。 图6 布儒斯特角原理图02 二向色偏振器 二向色偏振器是吸收型偏振器,它传输所需的偏振并吸收其余部分,其原理是单向拉伸掺杂特殊复合材料的基板,这样复合物大致在一个方向上排列,光的偏振方向与该方向一致时会被强烈吸收,而垂直于该方向的光则被透过。这类偏振器使用广泛,从低成本层压塑料偏振器到高成本玻璃纳米粒子偏振器,二向色偏振器可以做很大的尺寸,因此非常适合成像和显示应用。 图7 二向色偏振器示意图03 双折射偏振器 双折射偏振器属于分光型偏振器,它的工作原理是利用双折射晶体的特性,对不同偏振态光束的折射率不同。由于对s偏振光和p偏振光的折射率不同,入射的非偏振或椭圆偏振光在进入晶体时将分裂成两个单独的光束。大多数双折射偏振器由两块双折射晶体棱镜以一定的连接角度和晶轴角度组合而成。这类偏振器几乎不吸收或反射入射光束,因此较适合激光应用,它有优异的消光比和宽波长范围,但是价格比较高。 图8 双折射偏振器原理图 以上几种偏振器件可以将非偏振光或者椭圆偏振光人为调整为需要的线偏振光,如果想将线偏振光调整为圆/椭圆偏振光,可以搭配使用1/4波片来实现;如果想改变线偏振光的振动方向或者改变圆/椭圆偏振光的旋向,可以搭配使用1/2波片来实现,延迟波片产品的原理和具体选型可参考联合光科往期技术文章波片的选型和常规指标介绍。 实现了对光线偏振态的控制,我们可以将这种控制用于各种成像系统中,以消除光散射产生的眩光,消除反射物体的反光点,增加对比度。经过优化的成像有助于更好的识别表面缺陷或者其他隐藏的问题。也可以利用物质的非均匀性产生的不同折射率对偏振态的影响,用偏光检测仪检测样品的内部应力状态或者双折射率与厚度关系。 1. 机器视觉系统使用场景下,被摄物体和相机传感器之间的许多随机杂散光将被摄物的许多细节遮蔽了,将线偏振片安装在机器视觉系统的镜头前和光源前,可以消除模糊的眩光,提高图像质量进而提高机器视觉软件分析测量的准确度。 2. 专业摄影中,水面以下物体的反射光线会被空气/水交界面被反射光线所掩盖,很难拍摄清楚水面以下的物体,在摄影摄像镜头上增加滤光片可以大大减少水面的反射眩光更清晰的观察水下物体的细节。 3. 除了对散射眩光,高反射光的抑制消除提高图像质量以外,偏振检测技术还可以检测材料内部应力。在玻璃和塑料等非晶透明固体中,材料中温度和压力分布产生的内部应力会导致材料特性的局部变化,从而使材料具有双折射和非均匀性。90°交叉的偏振片之间无内部应力的被测样本应产生一个完全暗场,当样本存在内部应力时,折射率的局部变化将改变偏振角,从而导致透射率变化。 对于偏光器件的工程应用还有很多,本文不一一举例。在科研领域中,线偏振器件常与1/4延迟波片、漩涡波片搭配使用,产生圆偏振光束和特定拓扑何数的涡旋光束用于各种科学实验。
What We Do
A trustworthy expert in road lighting
There is a first-class road lighting design and installation team within the scope, with user centered product services. Fully improve the core competitiveness of the lighting industry 24/7.
205Lm/W high light efficiency
One street lamp with two on top, with the same brightness and half the power; Save half of the electricity bill.
Who We Are
We’ve 20 Years Of
Experienced
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
Phone Number
+086-13822792448
Email Address
glasslenslight@gmail.comM
WE ARE ALWAYS FOCUSED ON
Why Choose Us?
Change the workflow for your WordPress site, and control everything from the Site editor without using any extra plugins. Improved speed, web vitals score and SEO to get better positions
Business Service
Quickly productive just in time strategic theme.
Industries
Quickly productive just in-time strategic theme.
Team Management
Quickly productive just in-time strategic theme.
Healthcare
Quickly productive just in time strategic theme.
Stock Trading
Quickly productivate just in time strategic theme.
Technology
Quickly productivate just in time strategic theme.
Kazoom
Founder/CEO
Working Process
Hire Business
Consult
Request A Quote
Fowl creature toward female dont over thering
owner given darkness creature live
Research Project
Fowl creature toward female dont over thering
owner given darkness creature live
Satisfied Works
Fowl creature toward female dont over thering
owner given darkness creature live
See Our Skilled Expert Team
Denish Richh
Marketting Executive
Vitae tortor condimentum lacinia quis vel eros donec. Felis eget velit aliquet sagittis id consectetur purus ut faucibus. Dignissim sodales ut eu sem
Kazoom Huo
CEO, Founder
Vitae tortor condimentum lacinia quis vel eros donec. Felis eget velit aliquet sagittis id consectetur purus ut faucibus. Dignissim sodales ut eu sem
Sweety Li
Developer
Vitae tortor condimentum lacinia quis vel eros donec. Felis eget velit aliquet sagittis id consectetur purus ut faucibus. Dignissim sodales ut eu sem
Mariana Yez
CFO, Founder
Vitae tortor condimentum lacinia quis vel eros donec. Felis eget velit aliquet sagittis id consectetur purus ut faucibus. Dignissim sodales ut eu sem
Finished Project
Happy Clients
Skilled Experts
Honorable Awards