变焦透镜

液晶具有光电各向异性,外加电场引发液晶指向矢空间指向变化,进而引 起对特定入射偏振的相移或相位延迟量的改变。基于上述原理,液晶透镜可作为光学变焦透镜来调节焦距。液晶变焦透镜相 较其他新型变焦透镜有一定的优势,如液体变焦透镜。液体变焦透镜依靠外部压力或温度改变液体表面的曲率实现变焦,透镜材质与驱动方式容易受到重力、温度等因素影响。液晶作为透镜材质,不需改变其宏观形状或表面曲率,只需改变液晶分子的排列方式,因而重力对其几乎没影响。温度可改变液晶分子的通电响应时间和折射率,这对液晶透镜的应用范围有所限制,对其温度补偿是一种有效的解决方法。

  1. 1. 液晶简介

现今发现的液晶种类繁多,分类的方式也众多,一般按照液晶产生所需条件的差异之处大致可分为两大类:热致液晶(Thermotropic LC)和溶致液晶(Lyotropic LC)。其中热致液晶的光电效应与热有关,也就是和温度有关,而溶致液晶的光电效应顾名思义则是与加入的溶剂的浓度有关。而在实际的研究应用中,低分子热致液晶是主要的应用材料,对于这些应用比较广泛且实用性比较强的液晶材料,它的分类相对于前面地分类方式更为细致一些,一般分为向列相液晶、近晶相液晶和胆甾相液晶三类。“相”是液晶的各向异性的液相。从液晶名字由来可以知道,它在表面上具有像液体一样的流动性,而实际上还具有晶体所具有的各向异性。所以从微观角度上看,液晶分子必然具有各向异性,即液晶分子不但在位置上存在着有序无序的区别,而且在分子的取向方面同样具有相似的区别,即分子排列的取向有序性。而对于在实际显示应用中常用的热致液晶,从微观角度上的分子排列层面进行区分,一般可分为以下三大类:层状液晶(层状相)、丝状液晶(丝状相)、螺旋状液晶(螺旋状相)。

  1. 1.1 向列相液晶

向列相液晶(N相液晶),也就是上述所说的丝状液晶,向列相液晶是化学家对其的称谓,也是后续大家所熟知的叫法。之所以向列相液晶又叫作丝状液晶,是因为该类的液晶分子在排列特征上的现象比较明显,即液晶分子虽然在位置上比较随意,没有固定的位置,但是它的液晶分子在排列的取向方面却基本具有相同的方向,基于这一特殊的现象,所以整体看上去类似于一条条丝状,故又被称为丝状液晶。该类液晶是后续研究和实际应用中使用的最多的液晶类型。

图片

图1:丝状液晶

  1. 1.2 近晶相液晶

近晶相液晶(S相液晶)也是化学界对层状液晶的称谓,该类液晶材料的分子排列的方式与向列相液晶又很大的区别:液晶分子基本都会趋于一个方向排列,与此同时又会很“默契”地分隔开成为单独一层一层的分子层,基于此类分子排列的现象,该类液晶又被命名为层状液晶。而对于层状液晶还有进一步细致的分类,而它的分类依据主要是利用人们所观察到的分子的结构特点和它与其他现今已知的层状液晶的可混合性。现今已知的 11 种层状液晶的命名方法也是按照上述的特点进行命名的,分别为 SA、SB、… …SK。因为层状液晶的独特层状结构,其液晶分子只能位于其各自的分子层上,不能交错到其他分子层也不能位于分子层与分子层之间,对此也算是一种不同于其他排列形式的特殊意义上的“位置有序性”。

图片

图2:层状液晶

  1. 1.3 胆甾相液晶

胆甾(zāi)相液晶(Ch相液晶)的别称又叫螺旋状液晶。胆甾相液晶又叫螺旋状液晶的原因是除了液晶分子的特殊排列方式以外,还有多数胆甾醇的衍生物也都是螺旋状液晶。螺旋状液晶分子的排列方式除了名字所体现出来的螺旋状(分子取向沿某条轴螺旋式变换)的特点之外,还能在层状液晶的基础上添加少量左右不对称且具有旋光性的手征性分子也能形成螺旋状液晶。因此可知,螺旋状液晶还具有层状液晶特殊排列方式中的单独分子层,故该材料还有另外一种别称,被叫作“扭曲丝状液晶”。

图片

图3:螺旋状液晶1968 年有相关的研究人员发现了向列相液晶具有优良的光电效应后,让人们看到了液晶的特殊作用与广阔的应用前景,随后才不断有研究人员对液晶的研究进行了重点且更加细致的研究,并在相对之前而言的比较短的时间内让液晶的研究和其应用飞速地发展起来。在向列相液晶的光电效应被发现之后,与液晶相关的许多应用逐步问世,并迅速被应用与诸多领域,特别是在显示领域取得了巨大的成就。紧接着,液晶各方面的理论研究也更加丰富扎实,为后续研究人员在光电子学、医学、化学、生物学、物理学等诸多重要的领域及其交叉领域的研究提供了坚实的理论基础,也为这些领域中的各种应用输入了大量的技术产品,为科学研究和实际应用方面做出了巨大的贡献,也为现在的生活带来了丰富多彩地应用,极大地丰富和便利了人们的生活。

  1. 2. 向列相液晶的特性

在众多的液晶材料中,向列相液晶的分子结构和特性最为理想,更加容易对其进行相关的改造开发应用。向列相液晶分子结构的排布分析可以看出,其绝大多数液晶分子的取向基本是趋于彼此平行,然而又因为其分子在排列上有序性比较低,所以通过外加电场、磁场甚至是频率等因素可以比较轻松且按照研究需要去改变它的分子排列,这一优良特性使其在研究中受到青睐,从而成为现在应用领域最为常用的液晶材料。

  1. 2.1 液晶指向矢

液晶分子的形状从平面图上看是一种长形的棒状,其实这是研究中对液晶分子建立的最简单的模型,一般都把液晶分子以刚性长棒示意,如果要求更加严谨一点则可以看作是刚性椭球。在特定环境下(某特定温度或者浓度下)向列相液晶分子基本上是沿着某一方向相互平行进行排列,即液晶分子的长轴取向基本趋于平行,但是因为液晶所具有的流动性,所以在上述平行排列的状态下的液晶分子还会具有一定的流动性,这时就需要知道其分子的排列变化与取向的变化情况,而液晶的指向矢研究就是为了更加准确地反映液晶分子的这些排布上的变化。在研究液晶的指向矢时,根据液晶连续体理论会建立引用一个平滑的矢量场n^去表征液晶分子的排列状态,并进一步研究液晶的各向异性特征。引用矢量场n^后,将与n^相切的取向看作为液晶分子的排列图案或者可以粗略地将n^当作是描述液晶分子的长轴取向,但此时的状态应该是在一个趋于无限小的范围中去研究大量液晶分子的平均长轴取向。一般取n^的大小为 1。n^是一个为了简化计算而引入的没有量纲的特殊单位矢量,它只是在某种意义上为了用于描述液晶分子的空间排布的从优取向需要而建立的理想化物理量,所以在此称n^为研究对象液晶的指向矢。

  1. 2.2 液晶取向有序参数

液晶 指向矢反映的是宏观意义上大量的液晶分子在一个局部无限小的范围内的从优取向,然而这个从优取向在宏观上会因为不同的温度、浓度以及材料等因素的不同而变化,也就是说这些外在的因素会导致液晶分子指向矢量发生不同程度的偏离。因此对于不同的材料以及不同的外界因素下需要利用某种平均量去表征液晶分子的取向有序程度,以便于更好地对液晶进行研究和认知,为此引进的这个平均量称为液晶的取向有序参数,记作S。S=1时,液晶分子基本处于彼此平行的状态,此时称作液晶完全有序;S=0时,液晶分子取向没有明显的从优取向,即液晶分子表现出各向同性,此时称作液晶的状态是完全无序。

  1. 2.3 液晶的形变与自由能密度

液晶分子在没有任何外界干扰因素下,其分子的指向矢一般不会随空间位置的变化而变化。但如果一旦有外加条件,比如电场、磁场等因素时,液晶分子就会受到影响而非常容易发生形变,此时指向矢n^会随空间位置r的变化而变化。此时的指向矢n^是位置矢量r的函数,而如果液晶分子的指向矢偏离了它之前为常数时的取向方向,即可以说液晶发生了形变。而应用广泛的向列相液晶常见的形变一般有三种,分别为展曲(splay)、扭曲(twist)和弯曲(bend)。

图片

图4:液晶的形变而当施加外加电场 E 给液晶时,液晶的指向矢会因为在外加电场因素的作用下发生变化,其指向会与外加电场的方向趋于一致,而此时状态下液晶的自由能密度最小。

  1. 2.4 液晶的介电各项异性

介电各向异性参数Δε会因为同类分子或者不同类分子地聚集而发生改变。此时当液晶分子出现反平行现象时,分子之间内在的Δε会被补偿,从而使Δε的值降低,低于所期望的值;相反,液晶分子趋于优先排列平行的方向时,Δε的值会增加。而介电各向异性是外加电场时所产生的,因此外加电场的大小直接决定着介电各向异性的大小。在研究中,有时候会在液晶中加入一些化合物使液晶的各项特性更加符合研究要求,但是有时候在加入某些非极性化合物时,会导致 Δε的值增加,而Δε的值过高或者过低会使得整个混合物出现近晶相,这是不利于研究的。液晶的介电各项异性值的大小对液晶分子在电场中的取向具有比较直接的影响。而Δε的绝对值取值越大,越能够使液晶分子按照研究要求去定向排列,所以液晶材料的介电各项异性就显得十分重要,它是能够影响液晶分子在外加电场或者其他因素下进行定向排列的主要参数。在外加电场的条件下,液晶分子取向趋于电场的方向时,Δε为正;相反,当液晶分子的取向趋于与电场方向垂直时,Δε为负。因此在各项不同要求的研究中,需要根据用途去选择液晶材料的类型。

  1. 2.5 液晶的光电效应

液晶的光电效应液晶材料非常重要的特性,正是因为液晶的光电效应的发现,才使得液晶的研究和应用在短时间内迅速发展起来。简单来说,液晶的光电效应是液晶在外加电场的作用下会使液晶分子的取向发生变化,相应的变化从会使得液晶的光学特性也发生变化。这也是电控变焦液晶透镜能实现电控变焦的原因所在。液晶的光电效应是液晶所具有性质的一个大的整体概念,其具体的主要包括有电控双折射效应、旋光效应、动态散射等,其中液晶变焦透镜能实现电控变焦最主要的原因是液晶电控双折射效应,正是由于对液晶的电控双折射效应的诸多有益研究分析才使得液晶的诸多光学的应用和研究蓬勃发展。

  1. 2.5.1 电控双折射效应

双折射是各项异性介质所具有的特性,具体的解释是:当自然光入射到各项异性介质时,一般存在两条折射光线,该现象称为双折射现象。而液晶的电控双折射效应是指在外加电场的作用下,一束偏振光入射到液晶后会有两条折射光线出现,其中一条满足 Snell 定律的光称为寻常光,简称 o 光;另一条不满足 Snell 定律的光称为非寻常光,简称 e 光。而这两条不同的折射光线的特点是具有不同的折射率。以电控变焦液晶透镜为例,在外界施加的电场的作用下会导致透镜液晶分子的排列方向的改变,使对应的非寻常光的折射ne连续变化到寻常光的折射率no,所以可以通过外加电场所产生的电压去控制液晶分子的取向,实质上是控制改变液晶分子的折射率,相应地也就能实现通过控制电压去控制和调节液晶变焦透镜的焦距,达到实现透镜电控变焦功能的目的。更加细致地说,是因为液晶具有晶体的各异性,即一束光线穿过液晶层时,会分成两束偏振方向不同的光线:o光和 e光。o光在液晶中传播时,不管朝哪个方向,折射率都是固定不变的,而e光刚好和o光相反,它的振动方向始终与o光垂直,所以朝不同方向传播时会有不同的折射率。正是由于此,给液晶施加外部电场,由于某些液晶分子的指向矢有沿电场方向取向的趋势,故随着电压的改变,液晶分子的指向矢偏转角度也就会随之改变,使得其在同一方向的等效折射率会产生不同,从而可控制液晶分子形成梯度折射率,当偏振光射入时,会使偏振光形成汇聚或发散的变焦效果。由于这些特性的综合,才使得液晶透镜具有电控变焦的功能。总结而言就是在电场的作用下液晶分子发生转向,使得液晶分子产生不同的折射率,从而使通过透镜的偏振光线产生折射达到变焦效果,实现电控变焦,变焦的范围可以通过电压大小和液晶材料本身的特性去调节控制。向列相液晶的分子是长棒状分子结构,是正单光轴光电属性优良的材料,且液晶分子具有随电场变化而改变排列方式的性质。

  1. 2.5.2 旋光效应

旋光效应是指当光通过含有某种物质的溶液时,使经过此种物质的偏振光平面发生旋转的现象。而液晶具有晶体的属性,故液晶的旋光效应指的是:当平面偏振光沿着晶体光轴传播时,其振动面发生旋转的性质。对于电控变焦液晶透镜而言,在透镜装液晶的空腔里注入向列相液晶,然后将两块玻璃片前后相互垂直 90°放置,使透镜空腔里面的液晶内部发生扭曲,从而形成扭曲排列的液晶透镜盒。之后再在液晶透镜盒前后放置起偏片和检偏片使偏振方向平行。如此一来,由于之前液晶内部发生的扭曲,此时当光线入射时,入射光的偏振光轴也会扭曲旋转 90°。由于偏振光轴相互垂直,使得进入的光线不能通过检偏片,加之液晶透镜盒时不透明的,整个外视场呈现暗态。通过外加电场,增大电压到一定电压时,外视场将会呈现亮态,整个液晶透镜将会呈现黑底白像,而当改变起偏片和检偏片从之前的平行偏振方向为相互垂直时,可以得到与之相反的白底黑像。

  1. 2.5.3 动态散射

对于电控变焦液晶透镜而言,因为液晶的光电效应,当外加电压时,液晶透镜盒内部的液晶会产生不稳定的现象,而这种不稳定的现象变现为在原本透明的液晶上面会出现一些间隔有序的黑色条纹。这种不稳定的现象会随着电压的增大而变得更加严重,产生强烈的光散射现象,最后会导致液晶完全变浑浊,将外加电压去掉液晶盒内的液晶又会重新恢复之前透明的状态,整个表现称之为液晶的动态散射现象。动态散射现象的出现与液晶材料的介电性和导电性有关,二者性质相反,互相竞争,正负变换,才会出现动态散射。液晶盒内液晶因电压的变化而不稳定,之后出现动态散射现象,这直接影响着液晶变焦透镜的变焦性能,所以在液晶的应用研究中,动态散射是一个必须考虑且相当重要的因素。

  1. 3. 边缘电场驱动的液晶透镜

利用边缘电场驱动的液晶透镜主要由4部分组成,如图5(a)所示:(1)液晶透镜的上下玻璃衬底,为液晶透镜的载体;(2)上下玻璃衬底内侧有一层带氧化铟锡(Indium tin oxide,ITO)作为液晶透镜的驱动电极,它可以被刻蚀得到不同的图案;(3)ITO表面覆盖着一层聚酰亚胺(Polyimide,PI)取向层以确定液晶分子的初始排列方向;(4)液晶层,液晶可分为正性液晶与负性液晶,正性液晶的平行介电常数大于垂直介电常数,当驱动电压大于阈值电压Uth且不断提高,液晶分子会逐渐平行于电场强度方向。

图片

图5:边缘电场驱动的液晶透镜以正性液晶透镜为例,当液晶透镜处于非工作状态时,此时光线垂直于玻璃衬底入射在液晶层中感受到相同的有效折射率,出射光线不会发生折射;当液晶透镜处于工作状态时,如图5(b) 所示,液晶分子发生偏转,此时透镜中心到透镜边缘的有效折射率不再相同,光线发生折射。入射光的偏振方向与液晶分子的长轴成90°夹角时,其感受到的折射率为no,为寻常光折射率;入射光的偏振方向与液晶分子的长轴成0°夹角时,其感受到的折射率为ne,为非寻常光折射率。给定入射平面波偏振方向与液晶起始取向方向平行,液晶透镜的有效折射率沿边缘到中心逐渐增大,入射光的相移量由透镜边缘到中心逐渐减少,形成图5(b)所示的波前。光线的传播方向与波前面垂直,经液晶透镜后形成会聚光线,调节透镜中液晶分子的倾角可改变其焦距。相位延迟分布为:

图片

焦距为:

图片

其中,φ为透镜的光焦度,r为液晶透镜的孔半径,d为液晶层的厚度,nc和nb分别为透镜中央与边缘的有效折射率。

  1. 4. 离散电极型液晶透镜

目前对于边缘电场驱动的液晶透镜,只能通过改变结构或使用叠加电场来整体调节其电场。为了达到更精准的电场控制以达到预期的电场分布,离散电极布局被应用在液晶透镜中。

图片

图6:离散电极型液晶透镜为了缓解电极间隙带来的电场不连贯问题,在离散电极层与上PI层 间添加了一层材料为SU-8的薄介电层。

  1. 5. 高阻层电极型液晶透镜

高阻层型液晶透镜的出现可以解决透镜内电场分布不连续问 题而保持大孔径与低功耗等优点。

图片

图7:高阻层电极型液晶透镜电阻控制电极 R 和夹在控制电极和接地电极之间的液晶层形成的电容器的电抗阻抗组成分布式分压器,它允许透镜内电场连续分布。相比离散电极型液晶透镜,它不需要刻蚀复杂的电极图案以及布置相应的引线。除了调控施加的电压来改变液晶分子的倾角,还可通过调控施加的电压频率来该调控液晶在等效电路中的电导实现改变透镜的电压,最后形成预期的液晶指向矢分布,实现调节焦距的目的。