LED glass lens /Glass lens street light/Floodlight
光学元件的表面清洁方法

  目前在激光加工、生命科学、机器视觉、光通讯、激光美容、航空航天、教育科研等相关领域都会用到反射镜、棱镜、透镜、窗口片、滤光片、光栅等光学元件,选择适合的光学元件固然重要,但其日常维护清洁的方法同等重要。那么我们该如何对光学元件表面进行清洁呢?

   首先,在清洁光学元件时尽量在无尘洁净的环境中操作,免得划伤或是弄脏光学元件表面。常用清洁光学元件的工具和擦拭试剂包含棉签、指套、手套、镊子、风枪、高品质擦镜纸、擦拭布、试剂级异丙醇、丙酮、去离子水等,不同的清洁产品都有其各自的特殊清洁应用。手套、指套可使手上的水、油污、灰尘等与光学元件表面隔离;镊子可方便的拾取/夹取光学元件;风枪喷出的压缩气体可有效的吹去光学元件表面的灰尘;去离子水、异丙醇、丙酮能有效的清洁光学元件表面;擦镜纸或是擦拭布可不必划伤或是刮伤元件表面从而对光学镜片等进行清洁。
 

       对于球面光学元件,灰尘可用风枪直接吹掉,若是元件上面有水印、油污、指纹等需要进一步清洗,可用擦镜纸和适量的试剂级异丙醇或是试剂级丙酮,由元件中心施压并逐步向外清洁,同时要慢慢转动透镜,直至擦掉水印、油污、指纹等。
 


球面光学元件的清洁

平面光面元件的清洁

       对于平面光学元件也是如此,灰尘可用风枪直接吹掉,若是元件上面有水印、油污、指纹等需要进一步清洗,可用浸透清洁剂的擦镜纸在元件表面慢慢拖动。若是手法分寸恰到好处,清洁剂将被均匀挥发,不会留下任何条纹或斑点。

   注意事项:

      1.  金属膜层是裸金的不能用上述的方法擦拭,较好是做好预防工作

      2.  刻划工艺制作的光学元件或是微结构的光学元件尽量用风枪等除尘清洁,且不可轻易擦拭,免得损伤元件表面

波片的选型和常规指标介绍
波片原理波片也称为相位延迟片,是一种常见的偏光器件,也是较基本的光相位调制器。其工作原理是基于晶体的双折射现象,以单轴晶体为例,入射光在波片中分解成沿原方向传播但振动方向相互垂直的o光和e光,两光折射率不同,使得沿波片两轴传播的光速也不同。波片快轴方向的折射率较低,光速更快,而慢轴的折射率更高,光速较慢。需要指出的是,对于负晶体,e光比o光速度快,因此快轴在e光光矢量方向,即光轴方向,o光光矢量方向为慢轴;正晶体恰好相反。当光通过波片时,速度差将使两个正交偏振分量之间产生相位差,从而改变光偏振态。实际产生的相位差(相位延迟量)是由材料特性、波片厚度和入射光波长决定的,可以描述为:其中no、ne为相互垂直的o光和e光的折射率,d为波片厚度,λ为入射光波长。入射光通过不同类别参数波片时的出射光不同,可有线偏振光、椭圆偏振光、圆形偏振光等,出射光的偏振态由入射光的偏振态、和光轴的夹角以及通过波片后产生的相位差共同决定。波片同其他偏光器件,如偏振片、偏光棱镜、偏光分束镜、退偏器等相配合,可以实现光的各种偏振态之间的相互转换、偏振面的旋转以及各类光波的调制。波片分类波片是透明晶体制成的平行平面薄片,其光轴与表面平行,根据波片产生的相位延迟量不同,波片分为全波片、半波片(或1/2波片)、1/4波片,后两者较为常见。(一)全波片全波片产生2π整数倍的相位延迟,故不改变入射光的偏振态。全波片一般用于应力仪中,以增大应力引起的光程差值,使干涉色随应力变化变得灵敏。(二)1/2波片1/2波片产生π奇数倍的相位延迟,各种偏振光经过1/2波片后偏振态变化情况如表1所示。可作为连续调整的偏振旋转器。另外,1/2波片和偏振分束器配合使用,可用作可变比例的分束器。表1各种偏振光经过1/2波片后偏振态的变化表入射光1/2波片位置出射光线偏振光快(慢)轴与偏振方向成α角振动方向向快(慢)轴转过2α角的线偏振光,如图1所示圆偏振光任何位置旋向相反的圆偏振光椭圆偏振光任何位置旋向相反的椭圆偏振光图1 入射线偏振光经半波片后光矢量的方位  (三)1/4波片1/4波片产生π/2奇数倍的相位延迟,各种偏振光经过1/4波片后偏振态变化情况如表2所示。可用于光隔离器、光学泵浦和电光调制器。表2各种偏振光经过1/4波片后偏振态的变化表入射光1/4波片位置出射光线偏振光快(慢)轴与偏振方向一致线偏振光快(慢)轴与偏振方向成π/4角圆偏振光其他位置椭圆偏振光圆偏振光任何位置线偏振光椭圆偏振光快(慢)轴与椭圆主轴一致线偏振光其他位置椭圆偏振光   按波片结构来分,有多级波片(multiple-order waveplate),胶合零级波片或称复合波片(compound zero-order waveplate)及真零级波片(true zero-order waveplate)。真零级波片,只有一个所需延迟量厚度,因此厚度很薄,大概在十几至几十um。多级波片,多个全波厚度加一个所需延迟量厚度。胶合零级波片,将两个多级波片胶合在一起,通过将一个波片的快轴和另一个波片的慢轴对准用于消除全波光程差,而把所需要的光程差留下。 按材料来分,常见的有各种晶体波片、聚合物波片、液晶波片。常用的晶体包括云母、方解石、石英等。表3不同波片特征对比表 真零级波片多级波片胶合零级波片厚度一个所需延迟量厚度在十几至几十um多个全波厚度+一个所需延迟量厚度两个多级波片胶合在一起优点延迟精度高接受有效角度大温度稳定性好易加工温度稳定性好缺点厚度薄,制造使用困难波片延迟量对波长、温度、入射角都很敏感波片延迟量对波长、入射角敏感材料云母、聚合物材料石英石英 
 
 
波片选型波片种类很多,不同应用场景需要根据要实现的目的选择不同种类的波片。联合光科可提供由石英晶体制成的延迟量为1/2λ及1/4λ的胶合零级波片和多级波片。  零级1/2波片零级1/4波片多级1/2波片多级1/4波片 选择合适的波片,可参考以下步骤:  1.  确定相位延迟大小,选择1/2波片or 1/4波片?相位延迟和偏振态的关系可参考表1、表2。  2.  确定波片的类型,根据波片对温度、波长、入射角的敏感度要求,来选择选用多级波片or 胶合零级波片?可参照表3。相对胶合零级波片来说,多级波片价格相对便宜。  3.  较后,确定所需的波长和尺寸。
分光元件的选型和常规指标介绍
分光元件的原理      分光镜是把一束光按照一定反射和透射比例分成两束光的光学元件,多用于激光光学系统、照明光学系统、光谱仪光学系统中。分光镜由光学玻璃镀膜而成,通常在分光面上镀有分光膜,根据一定的要求和方式把光束分成反射光和透射光,常用的分光膜主要包括光强分光膜偏振分光膜消偏振分光膜等几类。在出射面镀有增透膜,以增加光学表面的透光量,减弱光束间及鬼像的干涉效应。 
      光强分光膜:按照一定的光强比把入射光分成两部分,如图1所示,用于普通的分光平片和分光棱镜。其中,仅考虑某一波长的叫做单色分光膜;考虑一个光谱区域的叫做宽带分光膜。根据分光镜所镀的分光膜带宽大小,可分为窄带分光镜和宽带分光镜。图1分光平片和分光棱镜结构 
      偏振分光膜:是利用光斜入射时薄膜的偏振效应制成的,即光斜入射穿过每一层光学薄膜时,边界条件要求电场和磁场的切向分量始终保持连续,使光的p分量和s分量表现出不同的有效折射率,引起偏振分离。可以分为棱镜型偏振膜和平板型偏振膜。    以偏振分光棱镜为例,由两块45°直角三棱镜拼合而成,在三棱镜斜面上镀偏振分光膜。当光以布儒斯特角入射时,p偏振光反射为零,而s偏振光则部分反射。为增加s偏振光的反射率,保持p偏振光透过率接近1,可以将两种薄膜材料交替淀积制成多层膜,如图2右图所示当膜层选择合适且足够多时,就能实现50/50偏振分光。图2 偏振分光棱镜结构 
       消偏振分光膜:用于倾斜入射的各种光学薄膜都会有偏振效应的存在,而对于部分光学系统来说,偏振分离带来的是光学系统性能的劣变,必须消除或减少。消偏振分光膜被设计成在指定的波长范围内,保证s光和p光按一定的反射透射比分光,同时保证s偏振态和p偏振态经过棱镜后偏振态没有变化。图3 消偏振分光棱镜结构 
      增透膜:当薄膜厚度适当时,在薄膜的两个面上反射的光,光程恰好等于半个波长,因而互相抵消。这就大大较少了光的反射损失,增强了透射光的强度,减少或消除系统的杂散光。通常单层膜只对某一特定波长的电磁波增透,为了使在更大范围内和更多波长实现增透,经常利用镀多层膜来实现。
 
 
     分光元件的分类      按照不同的分类标准,分光元件可分有以下分类: 表1分光镜种类列表
     平面分光镜在光路中起到分离光源能量和改变光路方向的作用,结构设计比较简单,光吸收小,分光后光损耗小等优点。与分光片相比,分光棱镜的反射及透射光光程是相等的。在透光时,分光棱镜没有光线偏移造成的影响,所以不会存在光束平移。 
 
     分光元件的选型      分光镜用途广泛,用户需求也各不相同,联合光科可提供K9宽带分光平片椭圆宽带分光平片镀铝点阵分光平片紫外熔融石英镀铝点阵分光平片紫外分光楔片氟化钙(CaF2)红外宽带分光楔片硒化锌(ZnSe)红外宽带分光楔片标准立方分光镜偏振立方分光镜(PBS)消偏分光棱镜等标准分光元件。更多分光元件详细资料>> 
 
     如何选择合适的分光元件?
 
1.  根据光源类型对分光元件适用的波段和带宽进行选择。选择适用于可见光、紫外、红外不同波段的分光元件,和选择窄带分光元件或宽带分光元件。
2.  根据光路空间大小和对光束偏移影响的要求选用分光平片、分光棱镜,当选择分光平片时,会造成反射光束和透射光束的不等光程,透射光束发生平移。对于成像光路设计来说,分光平片的引入会对光路的像差校正产生影响。
3.  根据光路对反射光和透射光的偏振态要求,选择偏振分光棱镜和消偏振分光棱镜。
4.  确定好分光元件类型后,再对分光元件的尺寸、分光比、波长等具体参数做出综合选择。
光学玻璃加工设备的现状及工艺发展
滤光片的选型和常规指标介绍
吸收滤光片       吸收滤光片是在塑料或玻璃基材中加入特种染料制成,根据同一材料对不同波长光的吸收本领不同,就可以起到滤波目的。较常见的为颜色玻璃滤光片,优点是稳定、均匀、具有良好的光学质量,且价格相对较低,缺点是其通带比较大,一般很少低于30nm。
       干涉滤光片       干涉滤光片是利用真空镀膜法在玻璃表面形成一定厚度的光学薄膜制成,通常由多层薄膜构成,利用干涉原理使特定光谱范围的光通过。干涉滤光片种类繁多,用途不一,常见的干涉滤光片有截止滤光片带通滤光片二向色滤光片
   截止滤光片,能把光谱分成两个区,一个区的光不能通过(截止区),而另一个区的光能充分通过(通带区),典型的截止滤光片有:长波通滤光片短波通滤光片。       图2为典型的长波通滤光片的光谱透射率曲线。 图2 长波通滤光片光谱透过率曲线
 
带通滤光片,只允许特定波段的光通过,通带以外的光截止,带通滤光片光学指标主要是中心波长、半带宽,根据需要,带通滤光片的通带可从红外到紫外,根据带宽大小分为:窄带滤光片,通带较窄的(带宽小于30nm的)宽带滤光片,带宽大于60nm以上的;
二向色滤光片,用于选择性地通过光的一小范围颜色,同时反射其他颜色。
除此之外,其他常见的滤光片:
中性密度滤光片,也叫衰减片,用来避免强光对相机传感器或其他光学件造成损伤,会吸收或反射未被透射的光线部分,以均匀地减少某一部分的光谱中的透射率。
荧光滤光片,是应用于生物医学和生命科学仪器的关键元件,主要作用是在生物医学荧光检验分析系统中分离和选择物质的激发光与发射荧光的特征波段光谱。
带通滤光片光谱透过率曲线二向色滤光片光谱透过率曲线
中性密度滤光片光谱透过率曲线荧光滤光片光谱透过率曲线
 
滤光片的技术指标
有关滤光片几个易混名词解释:
    带通:在光谱曲线中,光线实际通过的区域叫做通带。
    截止范围:表示通过滤光片衰减的能量光谱区域的波长间隔,简单的理解就是通带以外的范围。
    中心波长:在带通滤光片中,透射率等于峰值透射率50%时波长之间的中点。
    半带宽:在带通滤光片中,透射率等于峰值透射率50%时的波长点的差值。见图中蓝色虚线标注所示
    透过率:目标波段的通光能力,通常以百分比表示,数值越大,代表透光能力越好。
    截止率:又叫截止深度,表示截止区所对应的透过率T, 截止率可以用透射百分比来表示,也可以用光密度(OD)来表示,其换算关系为:即高光密度值表示非常低的透过率,低光密度则表示高的透过率。
    过渡带宽度:根据滤光片截止深度数值不同,指定的滤光片截止深度和50%透过率点之间允许的较大光谱宽度
    边缘陡度:即[(λT80-λT10)/λT10] *100% 
滤光片的应用和选型
​       联合光科是标准的滤光片光学供应商,能够提供截止、带通、分光、衰减等多种类型的滤光片,每个类型滤光片又有各种透射带、不同尺寸、不同透射率、不同截止深度的产品可供选择。       联合光科现也推出了一系列的高性能滤光片,包括:超陡长波通滤光片、陡长波通滤光片、高性能二向色分光滤光片、高性能窄带通滤光片、荧光滤光片具有深截止,超陡度,高透过,窄带宽、高激光损失阈值等优势以截止滤光片和带通滤光片为例,普通滤光和高性能滤光片主要参数对比见表1。从滤光片的透光曲线可以更直观的看到高性能滤光片的优势。 表1 普通滤光片和高性能滤光片主要参数对比
 
​图3 普通长波通滤光片和超陡长波通滤光片透光曲线对比
  
高性能窄带滤光片高性能二向色滤光片
  
荧光滤光片 
  
提供滤光片标准品及应用领域如表2。同时,联合光科也可根据您的需求为您定制滤光片。
表2 提供滤光片标准品及应用领域从众多滤光片产品中选择合适的产品,大体可以参考以下步骤:   
1.  根据希望滤光片在光路中实现的功能,截止、带通、分光、衰减等,确定所需滤光片的类型;   
2.  根据光路透射/反射/衰减光谱范围、透射率、尺寸等的要求选择合适的产品
工业镜头常规指标介绍和选型指南
成像镜头,又称光学镜头,因其应用不同衍生出各种名称。通常,我们把用于工业自动化领域的成像镜头统称为工业镜头。工业镜头是工业检测系统里的重要元素,其成像质量直接影响到检测系统的整体性能。        近年,智能制造行业的发展对成像技术提出新的挑战。为了满足成像应用,各种类型的工业镜头层出不穷。那么,面对如此之多的镜头,该怎样进行选择呢?
 
  工业镜头一般选型步骤       在选择现有工业镜头产品时,我们一般按照这个步骤进行选型。        在这个选型过程中,明确项目需求和确认成像镜头的参数成为了重点。项目需求是多种多样的,面对不同的需求,普遍适用的选型方法是不存在的。本文尝试理清工业镜头常用参数的定义,协助选型。
 
  工业镜头的常用参数  焦距       焦距是指镜头的光学中心(光学后主点)到成像面焦点的距离,平行光通过镜头汇聚于一点,这个点就是所说的焦点,是镜头的重要性能指标。       焦距的大小决定着视场角的大小,焦距数值小,所观察的范围大;焦距数值大,视角小,观察范围小。一般常用的工业镜头的焦距为8mm、12mm、16mm、25mm、35mm、50mm等。       焦距选择方法: 
 
  工作距离       工作距离是指镜头前端机械面到被拍物之间的距离。
 
  F值       光圈F值又称为光圈数,是镜头焦距与有效孔径之比。
 
  视场角       在光学系统中,以镜头为顶点,以被测物体通过镜头的较大成像范围的两边缘构成的夹角叫做视场角。视场角的大小决定了镜头的视野范围,视场角越大,视野就越大,光学倍率也就越小。       视场角与传感器尺寸有关,镜头的视场角应标明标准传感器尺寸。       以联合光科16mm 2/3″ 5M 定焦镜头 为例:    使用某一款相机,在相同工作距离下拍摄,不同焦距的镜头也会有不同的视场角。图:同款相机,相同工作距离,不同焦距的拍摄效果(注:图中所标为水平视场角)     视场角与焦距有关,如下图片:视场角与镜头焦距。
 
  畸变       镜头对被摄物体所成的像相对于物体本身的失真程度。       通常分为两种:       枕形畸变:镜头成像画面呈现向中间收缩的失真现象。       桶形畸变:镜头成像画面呈桶形膨胀状的失真现象。 
 
  光学接口       相机和镜头的连接方式即为镜头的光学接口,业内对于光学接口已经形成了标准的规范。例如CS口、C口、F口。在工业应用中,一般C口和CS口用在小传感器尺寸相机上,F口用在大传感器尺寸相机上。此外,还有线阵相机常用接口M42、M58、M72等,顾名思义这些就是某个直径的螺纹口。
 
  传感器尺寸       一般指镜头设计时,能够适配的较大的图像传感器尺寸(对角线),一般按照传感器尺寸进行描述,如1”、2/3”、1/2”、1/3”等,如果相机传感器尺寸大于镜头设计较大尺寸,则会在画面四个角形成暗影或黑角。 
     图:传感器超过适配尺寸,会形成黑角
 
  光学总长       光学系统第一个表面到像平面的距离。
 
  放大倍率       是指物体通过镜头在焦平面上的成像大小与物体实际大小的比值。       对同一个镜头而言,光学倍率与被拍摄物体距离镜头的远近有关;在较短工作距离对焦时,光学倍率较大。
 
  景深       镜头对某一物平面对焦后,在对焦平面的前后都有一段能清晰成像的范围,分别称为前景深和后景深。       景深=前景深+后景深; 像方弥散圆:成像光束未会聚于一点,在像平面上形成一个扩散的圆形投影,称为弥散圆。景深ΔL=ΔL1+ΔL2       δ:弥散圆直径;       f :焦距;       F:光圈F值;       L:拍摄距离;       减小光圈(增大F值)、增加拍摄距离、选择小焦距镜头均可使景深增加。
 
  MTF(调制传递函数)       用来表示镜头的成像性能,成像再现物体的对比度的程度,MTF可以近似理解为黑白线条的对比度,较大值为1,顶端的黑色线条代表该镜头理论上可以达到的较佳成像质量。其余彩色线条分别代表不同视场情况下的MTF值。其中同一颜色的线条分别代表子午T和弧矢S两个方向的MTF值情况。
        
    同一频率时,MTF值不同会给图像带来差异。
 
  总结       工业镜头的参数较多,从项目需求到工业镜头参数的确认,需要有一个转换的过程。理清工业镜头参数的概念,了解工业镜头常用参数对结果造成何种变化,从而选出合适的产品,往往是较高效的办法。
棱镜的选型和常规指标介绍
原理和分类
  棱镜是一种按照出射光线和入射光线成特定角度来转折光线的光学元件。棱镜在光学系统中主要实现转折光路、转像、倒像和扫描等功能。用于光束转向的棱镜一般可以分为反射棱镜和折射棱镜。
 
反射棱镜是将一个或多个反射面磨制在一块玻璃上,利用全反射原理和镀膜技术制成,如果在棱镜内部的光线抵达表面时的角度是大于发生全反射的临界角,便会产生全反射,所有的光线都会被反射回内部;若入射光线不能全部发生全反射,则需在该面上镀以金属反射膜,如银、铝或金等,以减少反射面的光能损失;另外,为了增加棱镜的透光量,减小或消除系统的杂散光,会在棱镜的入射面和出射面镀特定光谱范围的增透膜。在光学系统中反射棱镜主要用于改变光学系统光轴的方向或位置、改变成像方向用作转像系统、实现分光和合像等。
 
 
反射棱镜的种类繁多,形状各异,大体上可分为简单棱镜(如直角棱镜、等腰棱镜、五角棱镜、道威棱镜)、屋脊棱镜、椎体棱镜和复合棱镜。
图1 反射棱镜和折射棱镜的工作原理
 
折射棱镜是根据光的折射原理,工作面是两个折射面,两折射面的交线成为折射棱,两折射面间的二面角成为折射棱镜的折射角,用α表示。出射光线与入射光线的夹角称为偏转角,用δ表示,对于给定的棱镜,折射角α和折射率n是定值,折射棱镜的转向角δ只随光线的入射角I而变化。在光线的光路对称于折射棱镜时,偏向角取得较小值,表达式为:
折射角很小的棱镜称为光楔或楔形棱镜,由于折射角很小,当光线垂直入射或接近垂直入射时,光楔偏向角表达式可以近似简化为:δ=(n-1)α
 
图2 光楔
棱镜技术指标
 
镀膜特性
 
通常在棱镜反射面镀铝、银反射膜以提高光反射率,在入射面和出射面镀增透膜来增加棱镜的透光量,减小或消除系统的杂散光,包括UV、VIS、 NIR、SWIR不同波段。常见镀膜特性如下图。 
  
图3 多种镀膜特性
 
转向特性
 
棱镜可以实现转折光路、转像的功能,不同棱镜实现的光束、图像转折角度不同,同一棱镜用法不同,实现的转折角度也不同。图中坐标系不是真实系统坐标系,仅用来表示图像光线偏折方向、图像上下、左右旋转方向。
 
表1 棱镜的转向特征
 
棱镜的应用和选型
 
提供各种棱镜现货标准品,如适用于紫外、可见光、近红外等不同波段的,不同尺寸的准精度和高精度的K9玻璃或紫外熔融石英直角棱镜、K9五角棱镜、K9道威棱镜、K9屋脊棱镜、K9角反射镜、紫外熔融石英角反射镜、楔形棱镜等,产品表面镀膜情况有镀铝、银、金反射膜、增透膜、镍铬保护、黑漆保护等,产品优势及应用领域见表2,更多信息请参考网站。
 
我们在提供各种棱镜标准品的同时,我们也可根据您的实际需求为您提供棱镜定制的服务,如棱镜尺寸的更改、参数指标的提高、镀膜要求的更改等。
 
表2 、棱镜标准品及应用领域
光栅的常规指标介绍和选型指南
光栅的原理和分类
 
光栅是由一系列等距平行刻线组成的光学元件,它是利用光的衍射和干涉原理进行分光的一种色散元件,被广泛应用到生化仪器、光谱仪器、分光光度计等相关产品上或相关领域中。光栅的种类很多,分类的方式也不尽相同。
平面刻线衍射光栅透射光栅
 
按照工作表面的形状,可分为平面光栅和凹面光栅。凹面光栅兼具分光和聚焦功能,需沿着光谱面弯曲的方向拼接多个探测器才能完成全光谱的探测,且会伴随着较大的像差,造成结果的测量误差。因此,平面光栅更常用。
按照工作方式不同,可分为透射光栅和反射光栅两种。其中,透射光栅对光的利用率不高,光能损失较大。
    按照制作工艺不同,可分为全息光栅和刻划光栅。
         刻划光栅利用光栅刻划机,用钻石刀头对材料进行加工,刻线密度调节灵活,但所能达到的刻线密度有限,还可能存在周期性的刻划失误,产生鬼线效应,干扰光栅的分光。
         全息光栅是利用激光器产生两束相干光,在涂有光敏材料涂层的基板上产生一系列均匀的干涉条纹,使光敏物质被感光。然后用特种溶剂溶蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像。离子刻蚀技术还能够利用离子束轰击刻槽,加工刻槽的形状使之成为闪耀光栅,增强衍射效率。
 
光栅的分光性能及常用参数
 
光栅方程
光束经过准直后成为平行光,以一定的角度照射在光栅上。不同波长的光以不同的角度出射,决定各级主极大位置的方程式称为光栅方程。最基本的光栅方程为:d(sini ± sinθ)=mλ   m=0,±1,±2,…
方程表示,根据mλ 值平行光束以入射角 i 斜入射到缝间距为d的光栅上,将光以离散的角度θ偏转,其中m是主极大级次。入射角θ 衍射角分别是入射光线和衍射光线与光栅法线之间的夹角,在考察与入射光同一侧的衍射光谱时,上式取正号;在考察与入射光异侧的衍射光谱时,上式取负号。可以看出,对于给定的级次m,不同波长的光将以不同的角度从光栅出射。
图2 透射光栅与反射光栅衍射原理
 
色散
光栅的色散用角色散和线色散表示。相差单位波长的两条谱线通过光栅分开的角度为角色散:,我们光栅产品中也用倒角色散即角色散的倒数(单位nm/mrad)来表示色散能力。光栅的线色散是聚焦物镜焦面上相差单位波长的两条谱线分开的距离。设物镜的焦距是f,则线色散为:
 
衍射效率
光栅的衍射效率通常有两种定义,即相对衍射效率与绝对衍射效率。相对衍射效率,定义为在给定波长和衍射级次下,探测器接收到的光栅的衍射光通量与一块同孔径的标准反射镜的反射光通量之比;绝对效率,是指给定光谱级次中单色衍射光通量与入射光通量之比;光栅衍射效率曲线指的是光栅衍射效率对波长的函数关系。 
 
图3 典型的光栅衍射效率曲线图
 
闪耀角
闪耀光栅,是一种特殊形式的反射式或透射式衍射光栅,它的刻槽面与光栅面不平行,两者之间有一夹角γ,称为闪耀角。
图4 闪耀光栅衍射原理
 
闪耀波长
闪耀光栅能够在特定衍射级次产生最大光栅效率,即大部分光功率将会在设计的衍射级次,通常为1级,同时尽量减少其它级次(尤其是零级)的功率。由于这种设计特性,闪耀光栅会在某一特定波长下工作,这种波长也称为闪耀波长。在Littrow结构下,即入射光垂直于光栅刻槽面(光谱仪中称之为自准直式入射),入射光的角度i和衍射光的角度θ 相同,i=θ=γ,这时,1级光谱闪耀的光栅其闪耀波长λB为:λB=2dsinγ
 
光栅的应用和选型
提供各种光栅,包括透射光栅、平面刻线衍射光栅、平面全息光栅、透射光栅分光片等。表1 光栅标准品及应用领域
嘉腾LED玻璃透镜模组优势 1.散热快,产品更耐用 2.配光优,照明效果更佳 3.光衰少,延长使用寿命 4.外观美,产品设计独特 5.组件好,品质更优 6.品质更优,寿命10年以上 玻璃透镜优势 玻璃透镜连板设计,突破了传统的模组采用的PC连板透镜,带来一种全新的体验,有效地克服了PC透镜的不良问题: 1、抗腐蚀能力:高硼硅3.4玻璃属于硼硅酸盐玻璃中的硼硅玻璃,耐酸耐碱,抗腐蚀性能优越。 2、耐温性强:相比PC透镜,其热膨胀系数较低,拥有良好的热稳定性,光学表面温度的变化小,保留原有的光学照明效果。 3、透光率高:常规PC透镜透光率在85%左右,造成光照的浪费,玻璃透镜透光率为90-93%,镀加增透膜后可高达97%。 4、相比于PC透镜,玻璃透镜不会产生老化/黄化现象,从而影响透镜透光率。 5、相比于PC透镜,玻璃透镜不会吸附灰尘,并且方便清洗。 隧道照明配光 发光角度120°×80°、150°×80°(对称)等多种配光角度,合理的照度均匀度和防眩光等级等 设计有效的改善隧道内路面的墙壁照明状况,改善隧道内视觉享受,减轻驾驶员驾驶疲劳。 道路配光 有TYPE2-M、TYPE3-M等多种配光角度,其配光在路面形成照度均匀的类矩形光斑, 可以适用于双向八车道、六车道、四车道、二车道、一车道道路情况。 高杆灯配光 应用于大型广场、主干道交叉路口、码头、车站和体育场等场所中,悬挂高度较高,照明范围比较 广泛而且均匀,能够带来较好的照明效果,满足大面积场所的照明需求。 工矿灯配光 发光角度25°/45°/60°/90°/120°,主要应用于大楼外墙、桥梁、公园、广告招牌、球场广场、 工厂车间照明。
远心镜头的选型和常规指标介绍
远心镜头简介
    远心镜头,由Telecentric Lens翻译而来。“tele”是far,即中文的“远”;“centric”,翻译为“中心的”。“Telecentric Lens”直译即“远心镜头”。但按照字面,用户是比较难理解其准确含义。    从光学上定义,远心镜头是一种主轴主光线与光轴平行的成像镜头,其主要指标为远心度。    其光学定义比较抽象,我们可以从应用角度了解其特点。在应用端,即精密测量领域,远心镜头最突出的特点是可以在一定的物距范围内,图像放大倍率不发生变化,消除了其他光学镜头测量不准的状况。
  
    远心镜头可分为物方远心镜头、像方远心镜头和双远心镜头。下面从原理上来介绍下这三种产品的特点和区别:
物方远心镜头物方远心镜头,是将孔径光阑放置在光学系统的像方焦平面上,即入瞳位于物方无穷远处,所有进入镜头的物方发光点的主光线都和镜头的光轴平行,如图2所示。 该光路可以消除物方由于调焦不准确带来的读数误差,即在一定距离范围内,物距发生改变,但像高不变,即测得的物体尺寸不会发生变化。物方远心镜头用于工业精密测量,畸变极小,高性能的可以达到无畸变。
图2 物方远心光学系统
 
像方远心镜头像方远心镜头,是通过在物方焦平面上放置孔径光阑,即出瞳位于像方无穷远处,所有经过镜头进入到CCD的成像点的主光线都和镜头的光轴平行,如图3所示。该光路可以消除像方调焦不准引入的测量误差,即在一定范围内,虽然CCD的安装位置有改变,在CCD上成像大小不变。
图3 像方远心光学系统
 
双远心镜头双远心镜头,综合了物方远心镜头与像方远心镜头二者的优点,避免了两种方法产生的测量误差,保证了测量数据的精确度,如图4所示。双远心镜头主要用于机器视觉检测领域。
图4 双远心光学系统
 
远心镜头的技术指标
远心镜头由于其独特的设计原理,具有高分辨率、超大景深,超低畸变等光学特征。选择远心镜头时,通常需要关注放大倍率景深远心度畸变分辨率等技术指标。 
 
放大倍率
    远心镜头的放大倍率,β=感光器直径/视野直径,感光器尺寸如图5所示,在选择远心镜头时,要求远心镜头兼容的传感器靶面大于或等于配套的相机靶面,否则会造成分辨率的浪费。 
图5 感光器尺寸比例大小
 
远心度
远心度描述了远心镜头主光线偏离于光轴的角度,角度越小远心度越好,成像的倍率误差就越小,测量也就越精确。
 
景深
景深指镜头能成清晰像的最近物点与最远物点之间的距离。由于远心镜头独特的设计原理,具有比普通工业镜头大得多的景深。
 
畸变
畸变是光学透镜固有的透视失真的总称,远心镜头具有很小的畸变,联合光科的远心镜头产品畸变都做到了0.06%以下。
 
分辨率
分辨率指远心镜头能分辨的两点的最小距离或1mm内可以分辨观察到黑白条纹的线对数。也可用传感器能分辨的最高空间频率表示,远心镜头的分辨率=1 / 2 x 像元尺寸。如:传感器像元大小3um,远心镜头的分辨率则是166lp/mm,根据高分辨率的要求,镜头的MTF需要在166lp/mm大于0.3。
 
在选择远心镜头时,除了以上主要的技术指标外,远心镜头的接口类型照明方式F数等技术指标也需要满足要求。
 
远心镜头选型
   由于远心镜头具有独特的技术优势,目前,在机械零件测量、塑料零件测量、玻璃制品与医药零件测量、电子元件测量等高精度检测方面均有应用。远心镜头与光源、相机一起构成一个图像采集系统,因此远心镜头的选择受到整个系统要求的制约,在进行选择时要综合判断:1. 镜头的视场≥被测物大小;同时考虑镜头放大倍率和兼容传感器尺寸;2. 镜头的景深大小≥被测物表面起伏高度;3. 镜头的分辨率、畸变、远心度匹配检测系统的检测精度;4. 镜头的工作距离、外形尺寸匹配安装的尺寸空间;5. 镜头的接口匹配相机接口;6. 还需要考虑系统的打光照明方式,有非同轴和同轴两种远心镜头可供选择,同时要考虑到镜头F数和照明接口尺寸。
 
标准C接口的GA大视野双远心镜头和紧凑型高倍率双远心镜头,两个系列远心镜头均有同轴照明和非同轴照明两种版本,产品特点如下,
 
光学透镜加工由于精度高,加工对象特殊,所以必须在专门的光学车间内进行。因此,除了遵守一般的机械加工规则外,还必须遵守光学加工所特有的安全操作要求。 光学透镜车间的特点在光学零件加工过程中,大多数工序对温度、湿度、尘埃、振动、光照等环境因素是敏感的,特别是高精度零件和特殊零件的加工尤其如此。 因此,光学车间都是封闭形的,并要求恒温、恒湿、限制空气流动、人工采光,防尘。 01 温度对光学工艺的影响。恒温是光学车间一个明显特点之一。这里包括恒温温度及波动范围两个问题。光学车间各工作场所由于要求不同,对恒温温度及其波动范围的要求是各不相同的。 (1)温度对抛光效率与质量的影响由于抛光过程中存在的化学作用随温度升高而加剧,因而升温会提高抛光效率。但由于古典工艺中采用的抛光模制模用胶、粘结胶等主要由松香和沥青按一定配比制成,一定的配比只在一定的温度下使用。而且它们对温度的变化较为敏感,温度过低,抛光模具与零件吻合性不好;温度过高,抛光模具抛光工作面变形。这两者将使加工零件的精度难以保证,具体表现在光圈难以控制和修改。实践得出:抛光间的温度一般应控制在22℃±2℃为宜。 (2)检验对室温的要求温度的波动直接影响检验精度。一方面因为精密光学仪器对温度的波动很敏感;另一方面被检零件不恒温时,检具和零件间有温差会直接影响读数精度。所以,检验室必须恒温,并且也应控制在22℃±2℃范围内。 02 湿度对光学工艺的影响。在光学零件加工过程中,凡要求恒温或空调的地方,均因控制湿度所需。因为,水份蒸发速度直接影响湿度恒定状态。湿度过低,易起灰尘,零件表面清擦时也易产生静电而吸附灰尘,影响其光洁度。特殊零件如晶体零件的加工以及光胶工艺等,对湿度的要求尤为严格。光学加工过程中室内温度一般应控制在60%左右。 03 防尘。由于光学零件对表面质量即表面光洁度和表面疵病有极高的要求,所以光学车间的防尘问题也特别突出。灰尘在抛光时会使零件表面产生道子、划痕、亮丝;在镀膜时,会使膜层出现针孔、斑点、灰雾;在刻划时会引起刻线位置误差、断线等。灰尘来源主要有:外间空气带入;由工作人员衣物上落下(粒径一般在l一5μm左右,直径小于1μm的灰尘,往往不能依靠自重降落,而长时间悬浮于空气中,影响产品质量);不洁净的材料、辅料、工夹具等带入;生产过程中产生的灰尘(光学车间的净化条件,若按室内含尘的重量浓度要求,应控制在毫克/米3的数量级。胶合室的要求更严,一般以颗粒浓度作为要求,达到粒数/升的数量级)。
激光反射镜的选型和常规指标介绍
激光反射镜的简介
 
高能激光技术经历了60年的飞速发展,激光系统中的反射镜也承受着越来越高的功率密度,传统的反射镜基片材料、表面镀膜层和表面质量标准等已不能完全适应高能激光系统的需要。激光辐射对反射镜(及其他光学元件)的损伤主要有三种形式:一是因光吸收导致的热效应;二是短脉冲激光辐射造成的介质击穿;三是超短脉冲材料激光下,因极高的峰值功率而直接导致物质化学键破坏。因此,反射镜在传输高能激光束时,由于激光辐射作用及反射镜材料的热膨胀、局部热应力以及反射镜固定时的机械应力等原因,会使反射镜面发生形变,影响光束的传输质量。
激光反射镜是激光系统中的主要光学元件,包含单点波长激光反射镜、宽带激光反射镜,在激光光学系统中起到反射光线、折转光路等作用。广泛的应用在激光打标、激光焊接、激光微加工、非线性光学和各种以激光为光源的教育科研相关领域等。激光反射镜的好坏直接影响着激光系统的性能。
 
激光反射镜技术指标
 
在高能激光系统中,制约着反射镜性能的因素已不单单是反射率,还包括了激光损伤阈值、表面质量等。选择激光反射镜时,最重要也是最难选择的是激光损伤阈值。
 
激光损伤阈值
激光损伤阈值是衡量一个光学元件承受光辐射能力的参数,表示可以承受的最大光功率密度(连续光源)或最大能量密度(脉冲光源),单位分别是W/cm2J/cm2。如下图,是联合光科的Zerodur激光线介质反射镜系列产品的激光损伤阈值及其他部分参数。
 
图2 Zerodur激光线介质反射镜参数
 
连续激光对光学元件的损伤,主要是由光吸收形成的热效应造成的,损伤阈值由最高可承受的激光功率密度表示。
,单位是W/cm2,如,一个功率为100W的连续激光,光斑直径为5mm,则 
这样求得的是整个光斑上功率密度的平均值。
脉冲激光对元件的损伤阈值,通常由最大可承受的脉冲能量密度来表示,
,单位是J/cm2,如,一个单位脉冲能量为0.5J的脉冲激光,脉宽为20ns,光斑直径为5mm,则
,同样这也是一个平均值。
 
对于脉冲宽度为皮秒(ps)和飞秒(fs)的超快激光,由于在激光脉冲内有极高的峰值功率和电场强度,其损伤阈值通常无法从纳秒脉冲的损伤阈值中计算得到,且损伤机制和脉冲宽度有很大关系,不易表征。
 
判断激光反射镜的激光损伤阈值是否满足要求时,有几点需要注意:1. 对于连续激光,对于连续激光,为了保险起见,通常在计算得到的激光功率密度上乘2,来表示高斯光束中心区域的功率密度。2. 对于连续激光,光学元件的激光损伤阈值随波长成比例关系,例如,在532nm处的损伤阈值大约是1064nm处阈值的一半。3. 对于脉冲激光光束,常有一些较高功率的热点,为了保证反射镜不被损坏,建议在计算得到的能量或功率密度乘上2或3倍的安全系数。4. 对于脉冲宽度在微秒(μs)和纳秒(ns)之间的脉冲激光,损伤阈值和脉冲的时域宽度的平方根成比例关系。例如,一个光学元件在1μs脉冲下的损伤阈值,是其在10ns脉冲下损伤阈值的10倍。5. 若激光脉冲宽度在毫秒(ms)和连续激光之间,则要同时满足激光反射镜的连续和脉冲激光损伤阈值。 
表面面型
表面面型偏差指的是光学元件表面与理想标准面的偏差量,由光圈或表面平整度来表示。联合光科提供的激光反射镜标准品有两种面型精度,分别是λ/4@632.8nmλ/10@632.8nm,对于平面反射镜来说,数值越小表示表面越平整。
 
表面光洁度
表面光洁度,表示光学表面的划痕和麻点,越小的值表示划痕和麻点的尺寸越小。对于激光系统,光学元件的高表面光洁度尤为重要,可以有效降低光的散射。联合光科提供的激光反射镜具有高表面光洁度,一般优于20-10,甚至在10-5范围内。
 
激光反射镜应用和选型
 
激光反射镜被应用于非常广泛的领域,包括:激光器、激光设备、医疗仪器、光通讯等。联合光科可提供多种应用于不同工作场景的激光反射镜,包括:工作波长:355nm532nm1064nm266-20000nm入射角:45°0-15°0-45°表面面型:λ/4@632.8nmλ/10@632.8nm反射率:具有多种不同高反射率大小的激光反射镜,通常反射率>99%;损伤阈值:不同激光类型有多种不同高损伤阈值的产品,如,500W/cm2for CW laser5J/cm2for 10nsec pulses等;反射镜基底材料:根据应用的波长不同、功率不同、环境不同等因素,可以选择不同的反射镜基底,包括,熔融石英、紫外级熔融石英(UV Fused Silica)、微晶玻璃(Zerodur)、硼硅玻璃(Borofloat® 33)等;尺寸大小:直径为12.7mm25.4mm50.8mm12.5mm25mm50mm等各种尺寸反射镜; 选择激光反射镜时,以上基底材料、反射率、面型、损伤阈值、相应工作环境等都是需要考虑的因素。 联合光科可以提供激光反射镜标准品如下:详细请点击链接——激光反射镜
 
线扫系统及线扫镜头介绍
线扫镜头的介绍
       对于刚接触视觉成像的人员,听到线扫系统,线扫相机,线扫镜头,往往会有很多疑问,不知道该如何理解这些技术与产品。此文章将为用户解释线扫系统及线扫镜头的特点。
 
线扫系统的定义
       传统意义上,成像系统更多使用面阵相机,即相机的成像传感器为长方形,横纵尺寸上都有多个感光单元,可以采集一个方形区域的图像。使用面阵传感器的系统,我们可以统称为面阵系统。 
图1:面阵系统示意图
       而使用扫相机的成像系统,成像传感器为长条形,多个感光单元排成一行,可以采集一个细长条形区域的图像。我们可以称之为线扫系统。       当被检测物体与线扫系统有相对运动时,可以连续采集每一条数据,最终合成一张完整的图片。 
图2:线扫系统示意图
线扫系统的由来
       一般来说,一项技术的普及原因是解决了问题。那线扫系统解决了哪些问题呢?
       在工业检测系统中,工业相机的分辨率越高,检测精度更高。一些追求高精度的应用中,线扫系统比面阵系统更具成本优势和技术优势。
       成像技术发展的几十年中,主流成像相机的分辨率通常为1K*1K,2K*2.5K。如果需要更高的分辨率,只能靠多个相机拼接的办法获得。在拼接系统里,图像拼接难度大、系统故障率高一直是个难以解决的难题。一般来说,在相同的检测精度下,线扫系统的相机数量更少,运行也更稳定,能比较好地解决这些问题。
       随着芯片的更新换代,市场上有了更高分辨率的面阵工业相机。如5K*5K,或者1亿分辨率的工业相机。以5K*5K的工业相机为例,其横向分辨率是5K,但依然跟主流的8K,16K线扫相机有较大的差距。而新推出的1亿分辨率的工业相机成本是比较高的,并且配套的镜头并不十分完善,配套成本较高。线扫系统依然是一个更优的选择。
       可以说,线扫系统以更低成本提高了系统精度,也提供了更稳定的检测系统。因此线扫系统在某些场合获得了广泛应用。
图3:面阵系统与线阵系统的工作原理
 
线扫系统的构成
       线扫系统的构成有:线扫镜头,线扫相机,线扫光源,处理系统……等。
图4:线扫系统主要组成部分
线扫系统的应用
       线扫系统的应用比较多,比较常见的有印刷检测,钞票检测,纺织品检测,铁路检测,公路检测等等。
出版印刷检测纸币印刷质量检测纺织品检测铁道检测
 
线扫镜头介绍–线扫系统的核心部件之一
       线扫镜头,可理解为与线扫相机搭配使用的镜头。本质上说,线扫镜头跟面阵镜头没有区别。线扫镜头的特点是最大像面尺寸比较大,常见的成像尺寸有43.2mm,60mm,80mm等。因为这个特点,线扫镜头的常规参数往往难以达到设计效果,需要投入更多研发。
图9:线扫镜头参数
       
       随着检测水平的提高,对线扫镜头的要求也越来越高。但如何评价一个线扫镜头的性能却成为了一个难题,尤其是如何评价线扫镜头的成像质量。用户只能通过实拍测试的方法验证是否符合使用要求。实拍测试往往伴随着更高的时间成本,并且标准多样化,难以形成统一的标准。
       鉴于此,联合光科的线扫镜头采取的是标准设备实测的方法,为用户提供量化的数据。
       以我们的产品V8K系列举例:
产品介绍–GAOPTICS V8K系列线扫镜头
图10:高光光学V8K线扫镜头
       
       即使图10 列出这些参数,我们还是难以判断其性能,通常情况下,量化的数据更能说明线扫镜头的性能,更利于评估系统的性能。于是我们有了更详实的MTF测试报告。
 
       在一些中高端的线扫应用,用户会要求每个镜头都提供MTF实测报告,MTF涵盖了对比度、分辨率、空间频率、色差等相当丰富的信息,并且非常详细地表达了镜头中心和边缘各处的光学质量。
 
       以新产品V8K系列线620101为例,其MTF测试报告如下图所示:       1. 对数越大,对比度越高,镜头的分辨率越高。       2. 曲线越平滑,中心与边缘一致性越好。
 
图11:620101镜头 MTF测试数据
 
 
图12:镜头 MTF测试报告展示
 
       除了MTF数据,我们还提倡线扫镜头的畸变,相对照度等关键参数也需要量化,让用户能更准确评估其系统的水平。
 
总结
       在许多应用场景中,线扫系统能够以更低的成本获得更稳定的图像。线扫镜头作为线扫系统的重要组成部分,具有自身的特点,量化的数据更利于判断其性能。
图13:联合光科部分线扫产品&光源