LED glass lens /Glass lens street light/Floodlight
技术新引擎,“7070+连板玻璃透镜”助力LED道路照明新未来
根据散热器材料不同,LED光源模组原来可以这么分类

导言: LED光源模组是由LED光源和散热器组成,实现发光和自主散热模块化设计。对于普通的LED光源来说,芯片产生的热量大多数都是凭借散热器与空气进行热交换散失掉的。
  LED光源模组是由LED光源和散热器组成,实现发光和自主散热模块化设计。对于普通的LED光源来说,芯片产生的热量大多数都是凭借散热器与空气进行热交换散失掉的。

  选择合适的散热结构不仅能符合LED的散热需求,还能降低LED模组成本。LED光源模组根据散热器材料不同可分为:基于金属散热的LED光源模组、基于塑料散热的LED塑料光源模组、基于玻璃散热的LED光源模组、复合散热的LED光源模组等。

  基于金属散热的LED光源模组

  由于金属具有导热系数高、易加工、强度好等优点,基于金属散热的LED光源模组是LED灯具中使用较早、较为广泛的光源模组。制作LED金属光源模组的散热器材料有:铸铁、钢、铝、铜等,铝因为具有导热系数高、密度小、成本较低等优点,是LED金属光源模组最常用的材料。但是金属具有导电、密度大的特点,限制了LED金属散热模组在某些地方的使用。

  基于玻璃散热的LED光源模组

  玻璃具有透光率高、热稳定性好、绝缘性能好、美观、成本低、加工工艺成熟的优点,一直是传统灯具制作的首选材料。因为玻璃的导热系数差,玻璃LED光源模组只用在散热要求不高的地方。

  基于导热塑料散热的LED光源模组

  导热塑料的导热系数比普通塑料高上百倍,绝缘参数比金属好,制备难易度比陶瓷好,随着导热塑料研究的成熟,其价格会下降,因此许多学者认为LED导热塑料模组是LED灯具的一个非常重要的领域。

  复合散热的LED光源模组

  随着LED灯具的多样化,LED光源模组也往多元化发展,由单一材料散料发展到基于两种甚至多种材料复合散热的LED光源模组。LED复合散热模组吸取了两种散热材料的优点,克服了它们各自的缺点,在散热性能、成本、绝缘性、重量等方面都有相当的优势。因此许多学者认为复合散热LED光源模组是未来LED光源模组的发展方向。

  在机器视觉和半导体设备、3D成像和打印、太阳能和光伏发电、生命科学和医疗等产品的研发过程中,我们经常需要一些比较精密的LED光源,目前市场上主要是LED+导光板的简单形状组合,在过去的时代尚能使用,在AI时代,达到光学精度级别的光源才能满足您的需求。

光学玻璃常用技术指标

光学玻璃和其它玻璃的不同之点在于它作为光学系统的一个组成部分,每一品种光学玻璃对不同波长光线都有规定的标准折射率数值,光学系统的透过率主要决定于玻璃本身的光吸收系数,作为光学镜片设计光学系统的依据,光学玻璃的光学常数必须在这些数值一定的容许偏差范围以内,否则将使实际的成象质量与设计时预期的结果不符而影响光学镜片的质量。光学玻璃具有高度的透明性,物理及化学上的高度均匀性以及特定和精确的光学系数。

光学玻璃物理特性:

1.折射率(ND)

玻璃的折射率是以钠元素的特征谱线D=589.3nm测定的,以ND表示。

2.比重(s)

用流体静力学称量法测定玻璃的比重。

3.色度值(x,y,Y)

依据国际照明委员会(CIE)1931年和1964年规定的方法,测定出在A和D65标准光源照明下玻璃的色度值。

4.热特性

当玻璃温度升高1℃其长度相对变化率。

5.转变温度(Tg)

当玻璃的膨账量发生骤变时,所对应的温度即为试样的转变温度。此温度时玻璃的粘度近于10 13帕.秒。

6.软化温度(Ts)

当玻璃的物理性质发生急剧变化,其膨账量也趋近于零时的温度(玻璃的软化温度,这时玻璃的粘度趋近于10 11帕/秒)。

7.色温变换能力(V)

色温玻璃分为升色温玻璃和降色温玻璃两类,其变换能力以密勒德(Mired)值来表示。

升色温玻璃呈蓝色,牌号为SSB,其密勒德为负值。降色温玻璃呈琥珀色,牌号为SJB,其密勒德为正值。

光学玻璃光谱特性

根据有色光学玻璃的光谱特性,可分三大类

1、截止型玻璃

它们的光谱特性指标以透过界限波长λtj 透过界限允许偏差,规定波长的透射比Tλo和曲斜率K等来表示。

曲线1.jpg

2、选择吸收型玻璃

玻璃只透过(或吸收)某一个(或几个)波长范围内的光线,它的光谱特性指标是以规定玻璃厚度在特定波长λ处的透射比值和允许透射比偏差值表示。

曲线2.jpg

3、中性型玻璃

玻璃在可见光中各波长的光线无选择地均匀吸收,其光谱特性指标是以平均透射比Tp,平均透射比允许偏差范围△Tp 。最大允许偏差值Qz来表示

曲线3.jpg
光学玻璃——用于光学领域的玻璃

能改变光的传播方向,并能改变紫外、可见或红外光的相对光谱分布的玻璃。狭义的光学玻璃是指无色光学玻璃;广义的光学玻璃还包括有色光学玻璃、激光玻璃、石英光学玻璃、抗辐射玻璃、紫外红外光学玻璃、纤维光学玻璃、声光玻璃、磁光玻璃和光变色玻璃。光学玻璃可用于制造光学仪器中的透镜、棱镜、反射镜及窗口等。由光学玻璃构成的部件是光学仪器中的关键性元件。

概念

传输光线的非晶态(玻璃态)光介质材料。可用以做成棱镜、透镜、滤光片等各种光学元件,光线通过后可改变传播方向、位相及强度等。根据不同的要求,可把光学玻璃分为三大类:①无色光学玻璃——在可见及近红外相当宽广波段内几乎是全透明的,是使用量最大的光学玻璃。按折射率和色散的不同有上百个牌号,可分为两个品种,即冕牌光学玻璃(以K代表)和火石光学玻璃(以F代表)。冕牌玻璃是硼硅酸盐玻璃,加入氧化铝后成为火石玻璃。二者的主要区别是火石玻璃的折射率和色散都较大,因而光谱元件多用它制造。②耐辐射光学玻璃——具有无色光学玻璃的各项性质,并能在放射性照射下基本不改变性能。用于受γ辐照的光学仪器,其品种及牌号与无色光学玻璃相同。其化学成分是在无色光学玻璃的基础上,添加少量二氧化铈来消除高能辐射在玻璃中形成的色心,使这种玻璃在受辐照后光吸收变化很小。③有色光学玻璃——对某些波长的光具有特定吸收或透射性能。亦称滤光玻璃,有百余个品种。颜色滤光片对某些颜色能选择吸收,中性滤光片对所有波长的光的吸收相同,只是减低光束强度而不改变其颜色。干涉滤光片则是根据光的干涉原理,将不需要的颜色反射掉而不是吸收。

近年来又发展了一些新品种的光学玻璃,如对红外和紫外有良好透过率的玻璃;折射率或色散特高或特低的玻璃;随着光强变色的玻璃;光沿磁力线方向通过玻璃时偏振面发生旋转的磁光玻璃;在外电场作用下产生双折射的电光玻璃等等。

玻璃透镜怎么生产岀来

前景

光学玻璃是光电技术产业的基础和重要组成部分。特别是在20世纪90年代以后,随着光学与电子信息科学、新材料科学的不断融合,作为光电子基础材料的光学玻璃在光传输、光储存和光电显示三大领域的应用更是突飞猛进,成为社会信息化尤其是光电信息技术发展的基础条件之一。

随着国内经济持续、稳定发展,中国光学玻璃制造行业发展迅猛。根据国家统计局数据显示,2010年,光学玻璃制造行业规模以上企业数量达246家,行业全年实现销售收入为234.05亿元,同比增长53.70%;实现利润15.37亿元,同比增长87.10%;资产规模达到264.50亿元,同比增长77.49%。由于光学玻璃制造行业以国内销售为主,金融危机对其影响相对较小,行业依然表现出较好的增长势头。

简介

用于制造光学仪器或机械系统的透镜、棱镜、反射镜、窗口等的玻璃材料。包括无色光学玻璃(通常简称光学玻璃)、有色光学玻璃、耐辐射光学玻璃、防辐射玻璃和光学石英玻璃等。光学玻璃具有高度的透明性、化学及物理学(结构和性能)上的高度均匀性,具有特定和精确的光学常数。它可分为硅酸盐、硼酸盐、磷酸盐、氟化物和硫系化合物系列。品种繁多,主要按他们在折射率(nD)-阿贝值(VD)图中的位置来分类。传统上nD>1.60,VD>50和nD<1.60,VD>55的各类玻璃定为冕(K)玻璃,其余各类玻璃定为火石(F)玻璃。冕玻璃一般作凸透镜,火石玻璃作凹透镜。通常冕玻璃属于含碱硼硅酸盐体系,轻冕玻璃属于铝硅酸盐体系,重冕玻璃及钡火石玻璃属于无碱硼硅酸盐体系,绝大部分的火石玻璃属于铅钾硅酸盐体系。随着光学玻璃的应用领域不断拓宽,其品种在不断扩大,其组成中几乎包括周期表中的所有元素。

通过折射、反射、透过方式传递光线或通过吸收改变光的强度或光谱分布的一种无机玻璃态材料。具有稳定的光学性质和高度光学均匀性。

光学分类

对光学常数有特定要求,具有可见区高透过、无选择吸收着色等特点。按阿贝数大小分为冕类和火石类玻璃,各类又按折射率高低分为若干种,并按折射率大小依次排列。多用作望远镜、显微镜、照相机等的透镜、棱镜、反射镜等。

防辐照光学玻璃

对高能辐照有较大的吸收能力,有高铅玻璃和CaO-B2O2系统玻璃,前者可防止γ射线和X射线辐照,后者可吸收慢中子和热中子,主要用于核工业、医学领域等作为屏蔽和窥视窗口材料。

耐辐照光学玻璃

在一定的γ射线、X射线辐照下,可见区透过率变化较少,品种和牌号与无色光学玻璃相同,用于制造高能辐照下的光学仪器和窥视窗口。

有色光学玻璃

又称滤光玻璃。对紫外、可见、红外区特定波长有选择吸收和透过性能,按光谱特性分为选择性吸收型、截止型和中性灰3类;按着色机理分为离子着色、金属胶体着色和硫硒化物着色3类,主要用于制造滤光器。

紫外和红外光学玻璃

在紫外或红外波段具有特定的光学常数和高透过率,用作紫外、红外光学仪器或用作窗口材料。

光学石英玻璃

以二氧化硅为主要成分,具有耐高温、膨胀系数低、机械强度高、化学性能好等。特点,用于制造对各种波段透过有特殊要求的棱镜、透镜、窗口和反射镜等。此外,还有用于大规模集成电路制造的光掩膜板、液晶显示器面板、影像光盘盘基薄板玻璃;光沿着磁力线方向通过玻璃时偏振面发生旋转的磁光玻璃;光按一定方向通过传输超声波的玻璃时,发生光的衍射、反射、汇聚或光频移的声光玻璃等。

色散分类

按色散又分为两类:色散较小的为冕类(K),色散较大的为火石类(F)。

①冕类光学玻璃 分为氟冕(FK)、轻冕(QK)、磷冕(PK)、重磷冕 (ZPK)、冕(K)、重冕(ZK)、钡冕(BaK)、镧冕(LaK)、钛冕(TiK)和特冕(TK)等。

②火石类光学玻璃 分为轻火石(QF)、火石(F)、重火石(ZF)、钡火石(BaF)、重钡火石 (ZBaF)、镧火石(LaF)、重镧火石(ZLaF)、钛火石(TiF)、冕火石(KF)和特种火石(TF)等。它们在折射率nd与色散系数v的关系图像(见图)中分布在不同的领域。

抗辐射

抗辐射玻璃 是广义光学玻璃的一种。包括防辐射玻璃和耐辐射玻璃。

防辐射玻璃主要是对 γ射线和X射线有较大吸收能力的玻璃。当γ射线或X射线进入防护玻璃时,由于玻璃内部产生光电效应、生成正负电子对,同时产生激发态和自由态电子,使射入的 γ射线或X射线能量减小,穿透力下降,起到了防护作用。当防辐射玻璃的密度增加时,屏蔽能力也相应增加。防γ射线的玻璃的密度通常不小于4.5g/cm。近年来,已开始用密度为6.2~6.5g/cm的玻璃,常用的有ZF系列。

耐辐射光学玻璃主要指在γ射线作用下不易着色的光学玻璃。耐辐射光学玻璃牌号的命名,仍根据光学玻璃牌号,注明能耐辐射的伦琴数,例如,K509耐辐射光学玻璃的光学常数同K9,且能耐10伦琴剂量的γ射线。普通玻璃受高能射线辐射后产生自由电子,它与玻璃内部的缺位结合,形成色心。同时也可使原子核移位,破坏了正常的结构,也产生色心,使玻璃着色。

耐辐射光学玻璃中引入了CeO2,在高能γ射线辐照后,由于式①,能俘获电子,不使玻璃内部产生色心,且因Ce和Ce的吸收带在紫外区。当CeO2含量过高时,在紫外、红外的吸收带延伸到可见光区,使可见光的蓝色区域吸收增加,导致玻璃呈黄色。同时,也会因玻璃中其他成分的影响而加深颜色,所以CeO2的含量不能太高,在K509中CeO2的含量约为0.4%~0.5%,在K709中CeO2约为1%。

光学玻璃加工厂家设备的现状及工艺发展

制作原料

以优质石英砂为主料。适当加入辅料。由于稀土具有高的折射率,低的色散和良好的化学稳定性,可生产光学玻璃,用于制造高级照相机、摄像机、望远镜等高级光学仪器的镜头。例如一种含氧化镧lao360%,氧化硼b2o340%的具有优良光学性质的镧玻璃,是制造高级照相机的镜头和潜望镜的镜头的不可缺少的光学材料。另外,利用一些稀土元素的防辐射特性,可生产防辐射玻璃。

光致发光(photoluminescence)

定义:是指物质吸收光子(或电磁波)后重新辐射出光子(或电磁波)的过程。从量子力学理论上,这一过程可以描述为物质吸收光子跃迁到较高能级的激发态后返回低智态,同时放出光子的过程。光致发光是多种形式的荧光(Fluorescence)中的一种。

相关词条:荧光效应

     光致发光是一种探测材料电子结构的方法,它与材料无接触且不损坏材料。光直接照射到材料上,被材料吸收并将多余能量传递给材料,这个过程叫做光激发。这些多余的能量可以通过发光的形式消耗掉。由于光激发而发光的过程叫做光致发光。光致发光的光谱结构和光强是测量许多重要材料的直接手段。

      光激发导致材料内部的电子跃迁到允许的激发态。当这些电子回到他们的热平衡态时,多余的能量可以通过发光过程和非辐射过程释放。光致发光辐射光的能量是与两个电子态间不同的能级差相联系的,这其中涉及到了激发态与平衡态之间的跃迁。激发光的数量是与辐射过程的贡献相联系的。

      光致发光可以应用于:带隙检测,杂质等级和缺陷检测,复合机制以及材料质量鉴定。

光谱仪(spectrometers)

定义:记录光谱的装置。

相关词条:色散衍射光栅光谱自外差线宽测量频谱干涉波长计

光谱仪是一种用来记录光源光谱的仪器。即它测量光的功率谱密度(PSD)随波长或频率变化的方程。不是所有的光谱仪都能给出经过校准的PSDs;通常强度是没有校准的,校准因子(响应度)是与波长有关系的。 

采用频谱干涉方法不仅可以得到功率谱密度还可以得到光谱相位。 

目录

  1. 采用衍射光栅和棱镜的光谱仪
  2. 干涉光谱仪
  3. 光谱仪记录光谱细节
  4. 极限光谱区域光谱仪

采用衍射光栅和棱镜的光谱仪 

许多光谱仪采用一个或多个衍射光栅得到的与波长有关的衍射效应,或者一个或多个棱镜得到随波长变化的折射。在光束进入光栅或棱镜之前入射光需要是准直的。通过色散器件后,不同波长的成分传播方向略有不同。然后它们经过一些其它光学器件最终进入光电探测器。 

在扫描光谱仪中,探测器可以是光电二极管或光电倍增管,放置在窄缝后面,这样每次只有很窄波长范围的光能到达探测器。可以改变窄缝位置,或者光栅、棱镜的指向从而能够扫描某一特定波长范围的光,这里假设入射光的PSD在该时间内是不变的。这时光学装置的功能类似于可调谐的单色仪。图1是常见的Czerny-Turner单色仪的设计图。如果光谱很宽并且扫描的分辨率很高,并且假如探测器相应不够快,那么整个光谱的采集时间会很长。 

1.png

图1:Czerny-Turner单色仪设计图。进入窄缝的光通过曲面镜准直,然后经过衍射光栅产生随波长变化的偏转,然后经过另一个曲面镜重新聚焦。对于某一指向的衍射光栅的情况,只有很窄范围内波长的光可以通过出射狭缝。(图中的射线对应于该波长范围。)整个装置放置在一个箱子中,包含额外的孔径和黑色外罩为了使杂散光最小。 

如果采用非扫描光谱仪,光谱采集时间会极大缩短,此时采用的是空间分辨探测器,可以同时探测所用的波长成分。例如,探测器可以是CCD摄像头芯片。 

有些光栅光谱仪非常小,宽度只有几厘米。但是如果要实现很好的性能,即很高的分辨率和灵敏度,则需要较大的装置。 

干涉光谱仪 

干涉光谱仪通常具有很高的光谱分辨率,但是光谱范围很窄: 

  1. 有些装置采用法布里-珀罗干涉仪,采用压电致动器扫描反射镜间距,记录透射的光功率。可用的光谱范围称为自由光谱范围,由反射镜间距决定;通常为0.1 GHz到10GHz,用nm表示数值很小。分辨率带宽等于自由光谱范围除以精细度,后者由反射镜的反射率决定。反射镜之间间距大时得到的分辨率更高,但是自由光谱范围变窄。 
  2. 傅里叶变换光谱仪有的采用迈克尔逊干涉仪,其中干涉仪的一条臂在很长范围内进行机械扫描(mm, cm甚至更大范围)。整个扫描范围内得到的探测信号随时间的变化函数需要进行傅里叶变换得到光谱。另一种简单的方法是采用波长计,仅测量激光光源的波长,而不是记录整个光谱。 
  3. 阵列波导光栅可用于很小尺寸的光谱仪中。利用了小波导结构的干涉效应。 

光谱仪记录光谱细节 

根据采用的光谱仪,需要观察一些不同的量: — 入射光需要进入宽度可变的入射狭缝。为了得到最高的光谱分辨率,窄缝需要足够窄,但是这会减小透射功率,因此提高噪声,增大采集时间,尤其是光源亮度比较低时。有些光谱仪采用光纤输入光,可以采用多模光纤或者单模光纤。多模光纤易于收集光,但单模光纤能实现最好的光谱仪性能。 — 衍射光栅通常都是应用一级衍射,但是有时为了得到更高的光谱分辨率需要用到高级衍射。不管是何种情况,都存在其他级衍射的影响问题。如果遇到很难解释的光谱性质,可以看是否来自于这一问题。 — 光谱仪的响应与偏振有关,因为光栅的衍射效率或者棱镜反射损耗都与偏振有关。 — 用户需要校准光谱仪。在校准波长时,可以采用发射确定波长光谱的放电灯。在整个波长范围内校准响应度比较困难。可以采用具有已知灯丝温度或校准光谱的白炽灯。 

极限光谱区域光谱仪 

通常光谱仪工作在可见光区域,红外光或者还可能工作在紫外光区域。还有的光谱仪可以工作在极限光谱区域,例如,极紫外(EUV)或者X射线区域,其中波长只有几nm。这种光谱仪可能采用间距非常小的衍射光栅,或者在X射线区域时甚至采用单个晶体,利用原子大小的周期性结构。而光电探测器,则可以采用X射线CCD摄像机或者多通道探测器(MCP)(参阅光电倍增管)。 

紫外光(ultraviolet light)

定义:波长小于约400nm的不可见光。

相关词条:红外光准分子激光激光安全倍频非线性频率转换

紫外光是波长小于约400 nm(可见光波长的下限)的光。 

区分不同光谱区域有几种不同的定义: 

  1. 近UV光谱区域从400nm-300nm。中UV光从300nm-200nm,而200nm-10nm则属于远UV区域。更短的波长属于极紫外光(EUV)。 
  2. 真空UV(约小于200nm)是指真空装置通常采用的波长范围,因为该波长的光能被空气强烈吸收。真空UV包括远UV和极紫外光。 
  3. UVA代表波长范围为320-400nm,UVB为280-320nm,UVC为200-280nm。 

UV光具有很多的用途,例如UV消毒水和工具,UV固化胶黏剂,控制许多材料质量和激发荧光。 

目录

  1. 紫外光的主要性质
  2. 产生紫外光
  3. UV光学
  4. 安全隐患

紫外光的主要性质 

紫外光在下面两个方面与可见光不同: 

  1. 其短波长可以准确聚焦并且产生非常精细结构(假如采用很高空间相干性的光源)。这可以应用到UV光刻技术中,用来制备微电子装置,例如,微处理器和芯片。未来微处理器需要更精细的结构,需要EUV区域的光刻技术。目前正在研发EUV光源和其对应的光阻剂。 
  2. 其光子能量比很多物体的带隙能量高。因此,紫外光可以被很多物质吸收,产生的激发过程能引起物质化学结构发生变化(例如,化学键断裂)。这可以用到激光材料加工中(例如,激光刻蚀,脉冲激光沉积,制备光纤布拉格光栅),对水或医学器件消毒杀菌。UV光会损害人类的皮肤,尤其是UVC光具有杀菌作用。当紫外光与空气中的微量烃发生相互作用时可以将有机薄层沉积在附近的表面上;这种光污染会降低UV激光光源中非线性晶体的质量。 

产生紫外光 

激光器产生紫外光面临很多问题,但是还是有一些紫外激光器可以直接产生UV光:一些体激光器(例如,采用掺铈晶体, Ce:LiCAF),光纤激光器,激光二极管(大多数采用GaN),染料激光器,准分子激光器和自由电子激光器。另一种产生紫外光的方式是将近红外激光器的输出光进行非线性频率转换。参阅紫外激光器得到更多细节。 

尤其是在EUV区域,通常采用气体放电(例如,氙气或锡蒸汽)或激光诱导等离子体来产生几瓦特甚至几十瓦特的高功率的UV辐射。但是,这种光源不是相干的。 

有时紫外光不是由激光器产生的。尤其重要的是气体放电灯(例如,水银管),另外发光二极管(UV LEDs)也应用很广泛。 

UV光学 

对待UV光时,需要特殊的UV光学理论。UV应用中重要的材料参数是低泡和夹杂物含量,折射率很好的均匀性,双折射很小,表面很光滑。尤其是应用强UV激光器时,长期抗紫外线强度也很重要。在纯的氟化钙中需要用到UV光学,该材料具有很低的UV吸收,很高的均匀性,低双折射,高硬度(与其它氟化物材料相比),高稳定性和高损伤阈值。可以在低于160nm时使用,因此可用于氟化氩准分子激光器。但是它是易碎的,非各向同性的,并且吸湿。它的替代物是UV级的熔融二氧化硅,可以用于波长小于200nm时,而便宜的标准的熔融二氧化硅在小于260nm时具有很大的损耗。另一个可用的材料是钻石,它在小于230nm时是透明的,但是非常昂贵。 

有些光纤可以用于近紫外光谱区域,但是传播损耗相对比较高。用光纤传输紫外光在波长较短或者功率更高的情况下都是不可行的。 

在EUV区域,几乎所有的固体材料都有强烈的吸收,空气中在小于200nm时也会产生很强的衰减,因此真空UV或EUV用于光刻时需要在真空条件下。布拉格反射镜可以在EUV区域,采用钼/硅(Mo/Si)结构制备,在12nm处可以得到约70%的反射率。由于其反射率有限,因此需要改变EUV光学结构设计得到最小数目的反射表面。 

安全隐患 

紫外光对眼睛(尤其是在250-300nm)和皮肤(尤其在280-315nm)都是有伤害的,它会引起白内障或角膜炎,除了引起色素沉积和红斑外,还会引发皮肤癌。而小剂量不足以引起急性反应的,也会加速皮肤的老化。因此,如果采用UV光工作,尤其是UV激光器,需要特殊的激光防护措施。例如,开放光学装置中的UV光束需要采用一些金属管封闭。

折射率(refractive index)

定义:光速在介质中减小的因子。

相关词条:有效折射率群速度折射率折射Sellmeier公式光速非线性指数

透明介质的折射率,是相速度vph相对于真空光速减小的因子: 

1.png

这里假设平面波是线性传播的(光强比较低)。折射率通过相速度决定界面处的折射,反射和衍射现象。 

介质中光的波长等于真空波长的n分之一。 

根据材料的相对介电常数 ε 和相对磁导率 μ可以计算其折射率: 

1.png

需要注意的是,这里ε和μ是处于光频率时的值,与其在低频时的值差别很大。普通的光学材料的磁导率约为1。 

材料中折射率与光频率或波长有关的现象称为色散。普通的玻璃和晶体(例如,激光晶体)在可见光区域的折射率范围是1.4-2.8,并且波长越短时,折射率会增加(正常色散)。这是以下现象的一个结果,可见光区域(介质具有很大的透射率),在两个强吸收区域之间:紫外光区域光子能量大于带隙,而近红外或中红外光区域会发生振动共振。 

1.png

图1:二氧化硅在温度分别为0 °C(蓝色),100 °C(黑色)和200 °C(红色)时折射率(实线)和群速度(虚线)随波长的变化。 

半导体在透明区域具有更大的折射率。例如,砷化镓的折射率在1微米时约为3.5。这是由于当波长小于带隙波长(约870nm)时,发生强吸收现象。高折射率的结果就是菲涅尔反射很强,并且在半导体-空气界面处的全反射角比较大。 

透明光学材料中折射率与波长有关的现象可以由Sellmeier方程描述,方程包含一些经验得到的参数。该方程的拓展版本可以描述温度特性,图1中即采用了这一方程。在非线性晶体材料中发生的非线性频率转换中的相位匹配需要知道折射率随温度和波长变化的具体情况。 

在非各向同性介质中,折射率与偏振方向(参阅双折射)和传播方向(非各向同性)有关。如果介质具有光轴,光在该轴上传播时折射率与偏振方向无关。 

复折射率不仅可以定量表示单位长度的相位变化,还可以表示(虚部)光学增益或传播损耗(例如,由于吸收产生)。 

还有一种折射率为群折射率,可以量化群速度的减小。在共振情况下折射率会与群折射率差别很大,这在有些量子光学实验中可以看到。在群速度非常大或者非常小时会用到(慢光)。 

有些光子超材料(通常包含金属-介电复合材料)可以实现负折射率,最早是在微波区域实现,现在光学领域也得到了。负折射率会引起很多非常规的现象。例如,在真空与该介质界面处的折射光束与入射光束位于法线的同一侧。 

在波导中,每一个传播模式都对应一个有效折射率,与其相速度相关。

偏振合束(polarization beam combining)

定义:将两个偏振激光光束合在一起的技术。

相关词条:亮度激光辐射的偏振合束相干合束

偏振合束(或者偏振耦合)是将两线偏振激光光束合在一起的技术。 

非相干偏振合束 

非相干合束是较简单的情形。例如,两个大面积的激光二极管的出射光束中,一个是垂直偏振,另一个为水平偏振,将光束射向薄膜偏振片后,一束光被反射,而另一束光透射,并且两束光的传播方向是相同的。因此,可以得到非偏振光束,功率是两入射光束的和(忽略寄生损耗),光束质量与入射光束相同。因此,光束的亮度加倍。 

这一技术通常用于端泵浦固态激光器中。只有当激光晶体可以同时吸收两个方向的泵浦光时才能实现。Nd:YAG就是此种情况,而[[Nd:YVO4]]则不是。 

非相干偏振合束不能认为是功率缩放的方法,因为它不可重复:它需要入射光束是偏振的,但是得到的出射光束是非偏振的。 

相干偏振合束 

如果将两个相干的光束进行偏振合束,可以得到线偏振的输出光。假设两入射光功率是相等的,得到的输出光的偏振态与任一入射光束偏振方向之间的夹角都是 45°。这一方法是相干光束合成的一种。、 

由于出射光是线偏振的,相干偏振合束可以重复多次。因此该技术适宜于功率缩放。 

光子(photons)


光子(photons)

定义:光能量的量子。

相关词条:非经典光受激辐射光子计数声子自发辐射

当一束很弱的光束进入一个很灵敏的光电探测器,可以发现能量是以小束的形式传播的,而不是连续的。这可以解释成光束包含了一束束的能量,称为量子或者光量子。光子能量为h ν = h c / λ,即普朗克常数h与光频率ν的乘积。在二十世纪,Max Planch处理热辐射问题中就采用了光包含能量束的观点,Albert Einstein在研究光电效应时也利用了这一观点。光子则是在1926年物理化学家 Gilbert N. Lewis定义的。 

将光子看做光的粒子可以帮助理解许多量子现象,但是如果不了解其限制因素则很容易得出错误的结论。现代量子光学给出了非常自洽的、但是不是很简洁的对光的本性的描述。这里将光子看做量子化电磁场的元激发。这一理论框架下光子的性质比较特别,不能采用简单的粒子图像或者纯波动图像来解释。 

光子的一些关键性质 

  1. 光的传播(在自由空间或者波导中)实际就是波的传播。某时刻某一点的量子力学场振幅是光所有可能路径的叠加。叠加可能会干涉相长或者相消,这是光学干涉效应的基础。纯粒子图像很难与实验观察相符,例如,在传统的双缝干涉实验中,每一个粒子都会通过其中一条缝,而与另一条缝不相干;但是这无法解释只有当堵住一条缝之后,有些粒子才能到达某一位置,而两条缝都打开时就不能到达该位置的现象(相消干涉)。 
  2. 当光与原子或者其它粒子发生相互作用时,只有是光子能量h ν整数倍的能量才能够被光场吸收或者释放。这可以简单的理解为只能吸收或辐射一定数目的光子。只有当作用的粒子(例如原子)能够接收这些能量时,相互作用过程才会发生,即它们量子力学能级间的能级差对应光子能量,或者是光子能量整数倍(参阅双光子吸收)。纯的波动图像将这些能量限制看做共振效应,但是无法解释能量的量子化现象。 
  3. 在灵敏的光电探测器中,能量量子化特别明显,可以进行光子计数,即能够探测单光子吸收效应。这在很多的科学和技术领域都有应用。 
  4. 光子的静止质量为0,因此不能使其变慢或者静止。存在所谓的慢光现象,是由于电磁场与物质之间强烈的相互作用引起的,因此只有在介质中才存在这种现象。这时并不仅仅是电磁场激发,纯的光子图像不能给出很合理的解释。 
  5. 由于光子的泊松特性,多个光子倾向于激发相同模式的辐射场。例如,受激辐射过程中(激光器中很重要)就能发现,还可以在热激发辐射后的能量谱中看到(黑体辐射)。 
  6. 光子可以以纠缠态存在,即不同光子的有些性质(例如,偏振)0是相干的,尽管只有当进行测量时这些性质才具有特定的值。由于对不同光子的测量可以发生在不同的位置,这似乎意味着超光速传输信息是可能的(Einstein-Podolsky-Rosen佯谬),但是实际上是不会发生的。 

量子理论不仅能应用到可见光中,它还可以应用到任意的电磁波现象中。但是在射频技术中,量子效应并不像在光学和激光器技术中这么重要。这是因为射电波的光子能量与其室温下的热能相比很小,而光学现象中则刚好相反。 

在激光物理中,常见的现象是光子在介质中传播,例如,透明晶体或者玻璃,以及激光增益介质。这时严格来说称为光子就不合适了,因为电磁波会与介质发生相互作用,因此传播的是准粒子,有时称为极化激元,类似于电磁场的激发态与极化介质耦合的产物。 

光谱(optical spectrum)

定义:将功率或者能量分解成不同波长或者频率。

相关词条:功率谱密度光谱仪光梳带宽

光源或者一些光束的光谱(或辐射谱)或者包含了能量和功率在不同波长中分布的信息。通常它是用图表的形式表示,给出了功率谱密度随波长或者光功率之间的关系曲线。图1就是一个例子,给出了超连续光源的数值模拟光谱。单频激光器的光谱不同于图中的宽谱,是由非常窄的线表征,极限情况下线宽仅为1Hz量级,对应的波长范围只有约≈ 3 •10−12 nm(中心波长为1微米)。其它的激光器包含多条线,有的具有很大的带宽(尤其是超短脉冲的锁模激光器),约为100 nm,具有频率梳结构。 

1.png

图1:数值模拟超连续光源。参阅词条超连续产生得到更多细节。 

可以采用不同类型的光谱仪来接收光谱,它们适用的光谱范围及光谱分辨率都是不同的。 

光谱与光的时间相干特性密切相关。例如,由时间相干方程可以得到光谱。光谱还与电场的傅里叶变化有关,但是后者大多数情况下不能直接得到。因此,也称为光场的傅里叶光谱。 

光学带宽 

光学带宽就是指光谱的宽度。具有不同的定义,常用的是半高全宽(FWHM)。 

具有线结构的光谱 

有些光源的光谱非常平坦,例如白炽灯,光二极管或者超发光光源。而有些光源的谱中包含相距很近的窄线,只能从具有足够高光谱分辨率(小的分辨率带宽)的光谱仪中能够看到。例如,连续光激光器辐射多模光束,并且只辐射基本谐振腔模式时,光谱中的线是几乎是等间距的,并且间距等于谐振腔往返时间的倒数,在MHz或者GHz范围。如果激光器同时辐射高阶横模,那么光谱中存在附加的线,这时光谱会更加紧密并且是不等间距的。但是任意的锁模激光器都会产生等间距的频率梳光谱,同时光谱中还存在较弱的激光器噪声。