LED glass lens /Glass lens street light/Floodlight

Cases

道路照明EMC项目

道路照明案例

光效205LM/W,玻璃透镜,CSA016标准,IP68,WF2,CE安规,DIALux模拟

海上平台防爆灯
海上平台船用防爆灯

港口船用案例

光效205LM/W,玻璃透镜,可调支架安装,IP68,WF2,CE安规,船级社认证,DIALux模拟

石油化工防爆灯案例
石油化工防爆灯案例

石油化工案例

EX认证,光效205LM/W,玻璃透镜,多种安装方式,IP68,WF2,CE安规,船级社认证,DIALux模拟


Technical

Literatur

  • 光品质特性之暂态光视觉效应

    光品质特性之暂态光视觉效应

    ——为什么不应该使用手机测量闪烁或频闪效应?    TLA:闪烁和频闪效应暂态光视觉效应(TLA)是对以下两类需要避免的光视觉现象的总称:    • 闪烁,指人眼能直接感知到的光波动,具体的学术定义是:“处在静态环境中的静态观察者,对于亮度或光谱分布随时间波动的光刺激引起的视觉不稳定性的感知”。使人感知到闪烁的光变化频率为0Hz~80Hz之间。    • 频闪效应,具体的学术定义是:“处在非静态环境中的静态观察者,由于亮度或光谱分布随时间波动的光刺激引起的对运动变化的感知”。该效应只有当静止的观察者附近有运动物体时,观察者的眼睛才能够感知。使人明显感知频闪效应的光变化频率为 80Hz~2kHz。 闪烁与频闪效应现象都会令人不适,可能引起头痛,或者引发事故。包括白炽灯、LED灯等各类光源都可能产生以上情况。    有人试图利用手机摄像头评估暂态光视觉效应(Temporal Light Artefacts, TLA,包括闪烁和频闪效应)。事实上,使用手机摄像头用于比较或者评判 LED 照明产品的 TLA 性能时,操作复杂,得出的结果也不可靠,所以“使用手机测量暂态光视觉效应(TLA)”其实是一个伪命题。通过测量频闪效可视度(SVM),是描述人体对经调制的光反应唯一正确的方法。    利用手机摄像头测量暂态光视觉效应(TLA)    闪烁是可以直接由人眼观察到的,所以无需借助手机的摄像头。频闪效应则不同。 处于静态环境中(观察者静止,且周围没有运动的被观察物体)的人眼是无法察觉频闪效应的,而手机摄像头可以对光随时间的变化做出反应:在手机显示屏上会将光随时间的变化表现为条纹效果(banding effect)。但各种其他因素和手机摄像头自身的技术规格都会对最后的显示效果产生很大影响。影响的因素包括:摄像头每秒的卷帘快门效应、手机显示屏幕的刷新帧率、摄像头自动挡的设置参数等。手机摄像头一般使用 CMOS 摄像芯片和卷帘式快门,卷帘式快门是为了保证成像传感器的像素逐行感光并被及时读取,但这导致成像存在明暗条纹。刷新帧率(Frame Rate, FPS)与光的变化频率的关系导致这些明暗纹条在手机的显示屏上按一定的速度滚动。根据刷新帧率和光源的光变化的频率不同,或多或少都会看见明暗条纹。    不了解情况的用户尝试使用手机摄像头测量“频闪效应”,他们认为照片或视频上的“条纹”表明存在“频闪效应”。而事实上您在这类照片或者视频中实际看到的是手机的摄像刷新帧率是否刚好与光变化的频率产生相互干扰的效果。    单位:Pst LM(短期闪烁指数) 单位:SVM(频闪效应可视度)

    Know More

  • 光的形态在灯光照明设计中的创新应用

    光的形态在灯光照明设计中的创新应用

    光环境、灯光艺术等概念越来越引起人们的重视,灯光照明设计已经开始脱离了纯粹谈技术的层面。笔者称其为灯光照明设计的原因是灯光多偏向于艺术,照明则更多偏向于科学,而灯光照明设计也就必须兼备“照明科学”与“灯光艺术”这两个特点。在灯光照明设计过程中,艺术和科学是贯穿始终的。设计分为两个阶段:第一个阶段是将艺术与科学互融,第二个阶段是通过艺术形式表现出来[1]。将艺术与科学融合在设计中,就是要以光环境、灯光艺术为切入点,拨动设计师创新这根弦,摒弃传统设计思维对照明环境在数量指标方面达到标准的要求过高,而忽视了对光照场景在质量指标方面的追求[2],应从艺术与科学的角度全方位思考问题、解决问题。优秀照明设计师应该具有的首要的素质是对艺术美的敏锐和艺术家的天赋。技艺能够通过后天培养,如果审美意识的不足,那是没法填补的[3]。 世界万物都有其形态,而光却是较为奇特的另类。光是一种非物质的存留,没法径直看见而能点亮物体。长期以来,光均被当作一种缺乏形态的设计思路看待,而在灯光效果设计中,灯光是有形态的、有体量的,它需要凭借媒介才能映射到人们的眼帘,这种映射到人眼中的物理样态就是光束。它可以通过灯具、照明方式和发光体形成光的形态。 1、灯具形成的光的形态设计 灯具发出的光可分为集中光和漫射光[4]。集中光的特征是光线清楚地汇聚成一束,光照目标明晰,光的透过力较强,照在光滑物体上易出现较强的反射。集中光首要呈现为形状各异的不同光束,光束边沿范围亮度急剧减退,因而集中光很多拥有明晰的轮廓和形态。漫射光的特征是光线散发,不指定光照目标,亮度匀和,照在物体上不易出现较强的反射。漫射光束边沿的外形轮廓很模糊。在灯光照明设计中,集中光光束外形轮廓分明,是一种有极度视觉冲击力的设计因素,漫射光光线匀和,是另一种截然相反的设计因素,两者皆拥有厚实的艺术张力。电脑光束灯、射灯、荧光灯发出的光的形态或形成的效果分别如图1~图3所示。    1.1电脑光束灯发出的光的形态 电脑光束灯发出的光的形态是锥体外形,发出集中光,在舞台上,设计师往往较多地释放烟雾就是为了寻求这种强烈的光束效果。越是剧烈的光束拥有越明晰的形态。电脑光束灯的光学变焦范围扩大,形态转化的范围也随之扩大。有时光束形态像一个锥体,有时又像一根圆柱。形态转变的领域越宽广,留给观众的想象力越丰厚。这一根根明亮的光柱帮助设计师在没有实景、幕布之下来构建演绎空间,形成能取代实景、画幕的光幕,当光幕移动时,视觉画面出现美妙的变化之中。当成排、多层的电脑光束灯逐层点亮时,给观众留下层峦叠嶂的印象。不同光束的形态和不同光束的布列带给观众不一样的感触。修长的光束带来伸展,短小的光束带来强壮;歪斜的光束捎来荡漾,竖直的光束捎来平静;布列整齐的光束带来庄严,布列杂乱的光束带来随便。光束作为一道亮丽的“风景”出现在舞台上,不光具备舞台布景诸多相似之处,并且在时机上的表现力是传统的实景所不能及的。正因光束在时间和空间上表现得如此自由自在,光束也随之给予了更丰富的含义。 图1 光束灯发出的光具有锥形轮廓Fig.1 The light beam lights with conical contour    1.2射灯发出的光的形态    图2是射灯照在墙面上留下的集中光痕迹,通过墙面反射形成层次感,运用光鲜、轻快的光线路径,便可营造出虚幻、梦想的光照场景。类似抛物线形状光的形态挂在展示空间的墙面上,连续匀称地展现,光线柔和,韵律十足。这种重复致使视觉画面拥有极强的形式感,且让观众内心达成一丝均衡。与家具展品彼此呼应,相得益彰,衬托出陈列家具的井井有条。 图2 射灯在墙面上形成的集中光的效果Fig.2 Spotlight in the form of concentrated light effect on the wall    1.3 荧光灯形成的漫射光的形态    在灯光照明设计中,首选光的形态作为设计创作切入点,考虑到集中光光束边缘明晰有股较强视觉冲击力。而在室内天花吊顶上安装的荧光灯发出的漫射光弥漫在整个光照场景,根本无法找到光束,蕴含着一种温和的设计元素,增添室内柔和的光线,缺少强烈明暗对比而形成室内气氛祥和,所显现的光的形态能温和衬托出温馨的气氛,让柔和的光线撒遍室内光照场景的每一个边角。图3天花板上嵌装的荧光灯发出的漫射光充满着整个中国联通的营业大厅,洋溢着浓浓的温暖祥和的营商气氛。由此显见,无论集中光还是漫射光均有厚实的艺术表现力。 图3 荧光灯形成的漫射光的效果Fig.3 The effect of fluorescent lamp form of diffuse light    2、照明方式形成的光的形态设计    2.1灯槽造型决定光的形态    在灯光照明设计中,采用不同的照明方式,可以形成不同的空间艺术效果。如图4所示,天花、地面粉色灯槽的形状即受光面的造型决定光的形态,千姿百态的形态是因为在肉眼看不到的灯槽里布置了LED灯带,通过受光面的反射映入我们的眼帘,这是由间接照明方式所产生的。间接照明方式是运用光反射原理,将全部光线先投射到天花板或者地面、墙面上,再经由天花板或者墙、地面反射到被照物上,决定慢反射光的形态,在受众视线里营造出匀和温柔的光照场景,凸显某一光照空间主题,增进光照场景的艺术感染力,给人以擢升、幽静的心理感受[5]。 图4…

    Know More

  • 蓝光危害

    蓝光危害

    蓝光380nm-450nm 波段的光为高能短波蓝光,波长短,能量大,进入人眼并到达视网膜后, 会引起视网膜上大量光敏细胞死亡,造成视力损伤、眼干、眼涩、眼疲劳,同时诱发白内障、 黄斑病变等多种眼部疾病。 蓝光危害损结构 : 有害蓝光具有极高能量,能够穿透晶状体直达视网膜,引起视网膜色素上皮细胞的萎缩甚至死亡。 视疲劳 : 由于蓝光的波长短,聚焦点并不是落在视网膜中心位置,而是离视网膜更靠前一点的位置。   当眼睛需要聚焦时,眼球会长时间处于紧张状态,引起视疲劳。长时间的视觉疲劳,可能导致人们近视加深、 出现复视、阅读时易串行、注意力无法集中等症状,影响人们的学习与工作效率。睡眠差 : 蓝光会抑制褪黑色素的分泌,褪黑色素分泌的降低会影响睡眠。 LED光源产品蓝光危害安全级别 RG0级:免除级,不造成任何危害(所包含的蓝光危害部分定义为在10000s内不造成对视网膜危害); RG1级:I类,低危险(所包含的蓝光危害部分定义为在100s内不造成对视网膜危害): RG2级:II类,中等危险(所包含的蓝光危害部分定义为在25s内不造成对视网膜危害); RG3级:III类,高危险(光源在短瞬间造成危害)。 嘉腾LED玻璃透镜模组优势1.散热快,产品更耐用2.配光优,照明效果更佳3.光衰少,延长使用寿命4.外观美,产品设计独特5.组件好,品质更优6.品质更优,寿命10年以上玻璃透镜优势玻璃透镜连板设计,突破了传统的模组采用的PC连板透镜,带来一种全新的体验,有效地克服了PC透镜的不良问题:1、抗腐蚀能力:高硼硅3.4玻璃属于硼硅酸盐玻璃中的硼硅玻璃,耐酸耐碱,抗腐蚀性能优越。2、耐温性强:相比PC透镜,其热膨胀系数较低,拥有良好的热稳定性,光学表面温度的变化小,保留原有的光学照明效果。3、透光率高:常规PC透镜透光率在85%左右,造成光照的浪费,玻璃透镜透光率为90-93%,镀加增透膜后可高达97%。4、相比于PC透镜,玻璃透镜不会产生老化/黄化现象,从而影响透镜透光率。5、相比于PC透镜,玻璃透镜不会吸附灰尘,并且方便清洗。隧道照明配光发光角度120°×80°、150°×80°(对称)等多种配光角度,合理的照度均匀度和防眩光等级等设计有效的改善隧道内路面的墙壁照明状况,改善隧道内视觉享受,减轻驾驶员驾驶疲劳。 道路配光有TYPE2-M、TYPE3-M等多种配光角度,其配光在路面形成照度均匀的类矩形光斑,可以适用于双向八车道、六车道、四车道、二车道、一车道道路情况。高杆灯配光应用于大型广场、主干道交叉路口、码头、车站和体育场等场所中,悬挂高度较高,照明范围比较广泛而且均匀,能够带来较好的照明效果,满足大面积场所的照明需求。工矿灯配光发光角度25°/45°/60°/90°/120°,主要应用于大楼外墙、桥梁、公园、广告招牌、球场广场、工厂车间照明。

    Know More

  • 光电、交互、材料和光学最新技术

    光电、交互、材料和光学最新技术

    近年来各行业的技术发展之快,如Apple推出的新款iPad Pro采用了Mini LED作为屏幕显示,索尼PS5采用液态金属散热,语音交互控制技术的广泛普及…而灯具作为制造业中的一个受其他领域的高新科技发展影响较大的行业,如果想要预测未来应用在灯具制造的技术趋势,就不得不将目光投向近年科技的更新迭代。    一、光电显示技术Mini LED 今年4月Apple在春季产品发布会上推出了全新的iPad Pro,其屏幕首次采用了Mini LED,引起了行业的关注。市场分析认为此举可帮助Apple减少对三星OLED屏幕的依赖。那么Mini LED屏幕与主流OLED屏幕、传统LCD屏幕相比有什么优势呢?    Mini LED是采用100微米量级的LED晶体制作的背光模组,介于传统LED与 Micro LED之间。保证了体积小的同时,具有异形切割特性,所以生产难度较低,良率高。    相比LCD,Mini LED拥有更高的屏幕亮度和对比度:结合局部调光,支持单独控制更多的屏幕区域,明暗控制更灵活。    相比OLED,Mini LED在纯黑背景下,可以把分区调暗甚至关闭,获得接近OLED屏幕的对比度;由于采用传统背光层发光,Mini LED并不存在OLED屏幕的低频频闪问题,也不会因为有机材料寿命短,而引起的亮度不均匀和烧屏等问题。    Mini LED是LCD向Micro LED发展中的过渡性技术,目前Micro LED在技术工艺方面还需攻破,如成熟的微缩制程技术和巨量转移技术,因此Micro LED还未能正式商用。未来的光电显示市场,我们将可以看到Mini LED、LCD和OLED各自发展,长期共存。    下图为LCD、OLED、Micro-LED、Mini-LED RGB和Mini-LED+LCD的性能对比,感兴趣的朋友可以更加深入了解其发光原理及特性。    二、汽车交互:BMW全息触摸控制    BMW在2017国际消费电子展上展示了HoloActiveTouch 全息触摸控制技术,让人们再次领略未来自动驾驶汽车的内饰。驾驶员和车辆之间建立了一个虚拟的触摸屏:驾驶员可以在自由漂浮的显示屏上用手指手势进行操作,并通过触觉反馈来确认命令。    BMW HoloActive Touch汇集平视显示器、手势控制和直接触摸屏操作的优势,并增加了额外的功能,创造了一种独特的用户交互方式。这是第一次驾驶员可以在不接触任何材料的情况下控制交互功能。    如上图所示,用户可以用张开的手做出的简单手势来激活仪表板中大型全景显示屏上的控制板,而无需触摸控制界面。    画面是如何显示的?与平视显示器类似,全彩色显示器的图像是通过巧妙地使用反射来生成的,呈自由浮动形式,而不是投影到挡风玻璃上。在中控台高度处,驾驶员可以看到控制面板。此时,车内搭载的高灵敏度摄像头可在此检测驾驶员的手部运动,并特别记录其指尖的位置。用户的指尖一接触到这些虚拟按钮,系统就会发出脉冲并激活相关功能。驾驶员的操纵除了会得到视觉、听觉的反馈,甚至能从全息虚拟屏幕上直观的感知到压力反馈,使驾驶者在凭空挥舞手势时同样能得到触摸实体按键的触感反馈。 这种全息触摸控制技术大大简化了驾驶员的操作界面,并且增加了用户交互体验的趣味性。期待不久的将来,这项技术能够实装在更多车系中。    三、智能汽车语音助手 智能汽车市场日渐火热,随着自动驾驶技术的崛起,座舱内的信息层级大爆炸,中控大屏越做越大,交互界面越来越复杂。如何能够让用户快速、便捷地直达所需的功能层级呢?语音指令无疑是一个很好的解决办法。近年汽车厂商都纷纷引入智能语音交互系统,深度理解用户场景并与供应商联合定制。    以小鹏汽车为代表,其智能语音助手小P具有形象自定义和语音指令自定义功能。小P可以成为你想要的样子,如孩子、宠物等。用户还可以自定义语音指令及对应操作,例如:定义指令为起飞,车内可完成座椅躺平、空调最大风、收起后视镜等系列操作。    三、液态金属的散热应用 2020年底,索尼互动娱乐(SIE)公布了旗下最新世代的游戏机PlayStation 5。这款产品在设计方面其中一个最大的亮点在于其采用了涂抹型的导热材料——液态金属作为热导体,将主处理器的热量传导到散热片,以实现长期、稳定的高冷却性能。本次对PS5散热设计,成功地让游戏机的生产成本大大降低。…

    Know More

  • 光学玻璃加工厂家设备的现状及工艺发展

    光学玻璃加工厂家设备的现状及工艺发展

    —、从小到我们人手一个的手机,到日常生活的电视、电脑,再到国防领域的军工、航天,光学玻璃的需求随着现代科学技术的发展而日益广泛越来越多的精密仪器运用到了光机电相结合的新技术,推动了其实现了多功能、高性能和低成本的日益严格的要求,促进了传统光学玻璃加工设备、生产技术的发展及加工工艺的变革。这种变革推动了光学技工技术向两个不同的方向发展。第一,向小型、轻便和便宜的高效加工方向发展。光学塑料和玻璃压铸技术的快速发展使非球面透镜成本大幅下降,供给量大幅增加成为可能,越来越多的各种光学系统开始采用。例如很薄的变焦距镜头,在手机中得到了广泛的应用。正是由于这些小型、轻便和便宜的光学玻璃在各个领域中的应用不断扩大,带动了光学高效加工技术的迅猛发展。第二,向超精密加工方向发展。尖端科学技术领域特别是国防工业的技术进度对超精密光学玻璃提出了新的要求。、例如载人航天、激光武器的光学系统、光纤通讯元件、光集成电路中的微型光学玻璃,都是超精密的光学玻璃。这些光学玻璃的加工精度甚至达到了纳米级。这些零件的加工不能采用传统的方法,必须通过光学玻璃加工设备、超精密加工技术才能得以实现。传统的光学玻璃的加工方法已有百余年的历史,可以通俗的理解为“一把沙子一把水”。而新的光学玻璃加工方法始于上世纪70年代,军用光学系统由白光拓展为红外及激光系统,对光学玻璃也提出了成像质量要好、体积要小、重量要轻、结构还得简单的艰巨要求。随之光学加工行业进行了大规模技术革命和创新活动,新的光学玻璃加工方法不断涌现。目前,较为普遍采用的光学玻璃加工技术主要有:数控单点金刚石加工技术、数控研磨抛光技术、光学透镜模压成型技术、光学塑料成型技术、磁流变抛光技术、电铸成型技术以及传统的研磨抛光技术等。二、超精密加工技术基本原理1、 数控单点金刚石加工技术数控单点金刚石加工技术是一种非球面光学玻璃加工技术。它是在超精密数控车床上,采用天然单晶金刚石刀具,在特定的加工环境精确控制条件下,使用金刚石刀具单点车削加工出非球面光学玻璃。该技术主要用于中小尺寸红外晶体和金属材料的光学玻璃。2、 数控研磨抛光技术数控研磨和抛光技术是由数控精密机床将工件表面通过磨削加工成所需要的面形,之后通过柔性抛光模抛光,使工件达到技术要求的光学玻璃制造技术。该技术的原理最接近古典法光学加工技术,主要是通过机床的数字化精密控制来实现光学玻璃的精密加工。3、 光学透镜模压成型技术光学透镜模压成型技术是把软化的玻璃放入高精度的模具中,在加温加压和无氧的条件下直接模压成型出达到使用要求的光学玻璃。可以说光学透镜模压成型技术的普推广应用是光学玻璃零件加工技术的重大革命。此项技术对非球面玻璃零件的成本降低及产量提升有着划时代的意义。三、 光学玻璃超精密加工技术的应用范围1、 数控单点金刚石加工技术目前,采用金刚石车削技术可以直接加工出达到光学表面质量要求的材料主要是有色金属、错、塑料及红外光学晶体,而对于玻璃的加工还不能达到光学表面质量要求,需要继续研磨抛光修正。数控单点金刚石加工技术的另一个主要用途是加工各种模压成型所需的精密模具。2、 数控研磨抛光技术数控研磨抛光技术的主要加工材料是玻璃,这正弥补了数控单点金刚石加工技术不能直接加工成品光学玻璃零件的不足。该技术主要用于加工球面、非球面光学玻璃,是代替传统古典法光学玻璃加工方法的主要技术,具有精度高,加工效率高等优点。目前,市场上该技术发展的历史比较长,成熟的设备较为全面,如德国Satisloh公司,Optotech公司和Schneider公司等推出不同类型的铳磨和抛光机床,我国也开展了大量数控技术的研究。计算机数控研磨和抛光技术不仅在数控设备自动化和加工精度方面取得了很大的进展,各种不同抛光方法和原理的研究,极大的推动了光学非球面加工技术的发展。3、 光学透镜模压成型技术目前,光学透镜模压成型技术已经用来批量生产精密的球面和非球面透镜。不但能够制造常用的中等口径透镜,而且延伸到了 100微米的微型透镜阵列及50毫米的较大口径透镜,不但可以制造军、民用光学仪器中的球面和非球面光学玻璃,还可以制造光通信用的光纤耦合器用的非球面透镜等。现在,这项先进玻璃光学玻璃制造技术还掌握在美国的康宁、Rochester Precision Optics(RPO)、Maxell,日本的OHARA (小原)、H0YA (保谷)、奥林巴斯、松下,德国的蔡司,英国的Bluebell Industries和荷兰的菲利浦等少数国外公司。四、 光学玻璃超精密加工国内外技术进展情况1、国外非球面零件的超精密加工技术的现状在国际上光学加工已发展到第五代数控加工工艺,达到了高精度、高速度、高效率及专业化,已可以完成高精度非球面零件的加工,其中比较突出的是德国的光学加工技术。他们的数控加工技术不仅涵盖了从平面、棱镜、球面到非球面等各种面型的铳磨成型、抛光技术,以及配套的高精度检测技术,加工尺寸及检测范围从0>1 ~ 800mm„在非球面的加工方面尤为突出,利用先进的技工工艺可轻松完成高精度非球面的加工。非球面的加工方法有的用磨轮外缘点接触铳磨、有的使用弹性膜抛光再小磨头修正抛光的方式;工件的装夹方式有液压、真空吸附等方式。2、我国非球面零件超精密加工技术的现状我国超精密加工技术的研究始于80年代初,与国外有着20余年的差距。我国军工光电企业中的光学玻璃的加工技术经过多年来的发展,非球面数控加工技术在近些年也有很大发展,特别是航空航天系统应该引进了些先进的技术和设备,部分企业的技术水平有了较大提高,但兵器行业的光电企业光学加工普遍还是采用传统的工艺,非球面的加工大部分是靠手工修磨,效率极低,手修过程还易出错,可靠性差。光学玻璃透镜模压成型也仅仅停留在毛坯阶段。随着现代化的兵器装备中对大口径、高精度的非球面镜的需求不断增加,非球面加工技术的提高迫在眉睫。但由于进口非球面数控加工设备价格较高,大部分企业也只配备了少量设备,只能解决现有高端产品的非球面加工。难以在此基础上形成批量和提出新工艺。五、结束语目前,国并发达国家已有30余年的新型光学系统的发展历史,新型光学系统,特别是高次非球面光学系统已获得相当的发展与利用。在这一领域,国内还有相当大的差距,甚至是空白。这种情况严重地阻碍了我国高性能光学系统的发展,影响我军的装备水平。开展有关的应用基础、关键技术、系统与工程技术方面的研究具有重大的意义。超精密加工技术的发展,一改光学系统概念设计数百年停滞不前的状况,使现代光学系统的设计和制造获得了革命性的发展。解决我国现代光学系统的制造,特别是高分辨率、大口径高次非球面光学系统加工的瓶颈技术,达到和突破目前世界高分辨率大口径光学系统的实际水平,实现我国先进光学制造技术上新的台阶,具有重大的意义。 嘉腾LED玻璃透镜模组优势1.散热快,产品更耐用2.配光优,照明效果更佳3.光衰少,延长使用寿命4.外观美,产品设计独特5.组件好,品质更优6.品质更优,寿命10年以上玻璃透镜优势玻璃透镜连板设计,突破了传统的模组采用的PC连板透镜,带来一种全新的体验,有效地克服了PC透镜的不良问题:1、抗腐蚀能力:高硼硅3.4玻璃属于硼硅酸盐玻璃中的硼硅玻璃,耐酸耐碱,抗腐蚀性能优越。2、耐温性强:相比PC透镜,其热膨胀系数较低,拥有良好的热稳定性,光学表面温度的变化小,保留原有的光学照明效果。3、透光率高:常规PC透镜透光率在85%左右,造成光照的浪费,玻璃透镜透光率为90-93%,镀加增透膜后可高达97%。4、相比于PC透镜,玻璃透镜不会产生老化/黄化现象,从而影响透镜透光率。5、相比于PC透镜,玻璃透镜不会吸附灰尘,并且方便清洗。隧道照明配光发光角度120°×80°、150°×80°(对称)等多种配光角度,合理的照度均匀度和防眩光等级等设计有效的改善隧道内路面的墙壁照明状况,改善隧道内视觉享受,减轻驾驶员驾驶疲劳。 道路配光有TYPE2-M、TYPE3-M等多种配光角度,其配光在路面形成照度均匀的类矩形光斑,可以适用于双向八车道、六车道、四车道、二车道、一车道道路情况。高杆灯配光应用于大型广场、主干道交叉路口、码头、车站和体育场等场所中,悬挂高度较高,照明范围比较广泛而且均匀,能够带来较好的照明效果,满足大面积场所的照明需求。工矿灯配光发光角度25°/45°/60°/90°/120°,主要应用于大楼外墙、桥梁、公园、广告招牌、球场广场、工厂车间照明。

    Know More